Skip to main content
Log in

Mountain-block recharge, present and past, in the eastern Española Basin, New Mexico, USA

Recharge actuelle et passée d’un massif montagneux, partie orientale du bassin Española, New Mexico, USA

Recarga en un bloque montañoso, presente y pasado en la Cuenca Española oriental, New Mexico, EEUU

Recarga actual e histórica em blocos montanhosos da Bacia Espanhola oriental, Novo México, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Noble gas recharge temperatures (NGTs) and radiocarbon ages were determined for 43 groundwater samples collected in the eastern Española Basin, New Mexico (USA), to identify mountain-block recharge in waters <10 thousand years (ka) old and to evaluate possible changes in mountain-block recharge over the past ∼35 ka. For Holocene samples from the southeastern area, NGTs are dominantly 2–4° cooler than the measured water-table temperature near the mountain front. Computed minimum mountain-block recharge fractions are dominantly 0.2–0.5, consistent with previous large mountain-block recharge estimates. NGTs do not display the distinct low during the last glacial maximum observed in other paleorecharge studies; samples recharged 15–25 ka ago are on average only 1.3° cooler than Holocene samples. Instead, samples with the coldest NGTs were recharged 25–35 ka ago. A proposed explanation is that higher precipitation rates during the last glacial maximum resulted in a lower mean recharge elevation for the basin, essentially buffering the effect of the lower mean annual air temperature and producing NGTs similar to the Holocene. In the period preceding the last glacial maximum, precipitation rates more like today’s resulted in Holocene-like mountain-block recharge fractions, producing a mean NGT ∼5° cooler than the Holocene, as expected.

Résumé

Les températures de recharge (NGTs) gaz rares et les âges carbone 14 ont été déterminés sur 43 échantillons d’eau souterraine prélevés dans le bassin oriental de Española, New Mexico (USA), pour identifier la recharge d’un massif montagneuse par des eaux d’âge inférieur à 10 mille ans (ka) et d’en évaluer les changements possibles au cours des 35 ka passés. Les NGTs des échantillons holocènes du secteur Sud-Est sont toujours de 2 à 4°C inférieures à celles de la nappe près du front du massif. Les parts minimales de recharge du massif calculées sont comprises entre 0.2 et 0.5, compatibles avec les estimations antérieures de recharge du massif. Les NGTs n’indiquent pas les températures plus froides du dernier maximum glaciaire observées dans d’autres études de paléo recharge; des échantillons témoins d’une recharge il y a 15–25 ka présentent une température moyenne inférieure de 1.3°C seulement aux échantillons holocènes. Par ailleurs, les échantillons présentant les NGTs les plus basses ont été rechargés il y a 25–35 ka. Une explication proposée est que des taux de précipitations plus élevées durant le dernier maximum glaciaire ont abouti à une altitude moyenne de recharge plus faible dans le bassin, tamponnant sensiblement l’effet d’une température moyenne annuelle plus basse de l’air et induisant des NGTs similaires à celles de l’Holocène. Dans la période précédant le dernier maximum glaciaire, des taux de précipitation proches des taux actuels ont abouti à des parts de recharge du massif similaires à celles de l’Holocène, produisant des NGTs moyennes environ 5° plus basses que celle de la température holocène attendue.

Resumen

Se determinaron las temperaturas de la recarga de gases nobles (NGTs) y las edades de radiocarbónicas para 43 muestras de aguas subterráneas recolectadas en la Cuenca Española oriental, New Mexico (EEUU), para identificar la recarga en un bloque montañoso en aguas menores <10 mil años (ka) de edad y para evaluar los cambios posibles en la recarga del bloque montañoso durante los pasados ∼35 ka. Para las muestras del Holoceno proveniente del área sudeste, las NGTs son predominantemente 2–4° más fríos que la temperatura medida de la capa freática cerca del frente montañoso. Las fracciones mínimas calculadas de la recarga del bloque montañoso son predominantemente 0.2–0.5, consistente con estimaciones previas de recarga para grandes bloques montañosos. Las NGTs no exhiben la baja distintiva durante el último máximo glacial observado en otros estudios de paleorecarga: las muestras recargadas 15–25 ka atrás son en promedio solamente 1.3° más frío que las muestras del Holoceno. En su lugar, las muestras con las NGTs más frías fueron recargadas 25–35 ka atrás. Una explicación propuesta es que el alto ritmo de precipitación durante el último máximo glacial resultaron en una menor elevación de la recarga media para la Cuenca, amortiguando esencialmente el efecto del descenso de la temperatura media anual del aire y produciendo NGTs similares a los del Holoceno. En el período precedente al último máximo glacial, los ritmos de precipitación más parecidos a los de hoy resultaron en fracciones de recarga del tipo holocénico en los bloques montañosos, produciendo una NGT media ∼5° más fría que en el Holoceno, como era de esperar.

Resumo

Determinaram-se as temperaturas da recarga por gases nobres (TGN) e as idades por radiocarbono em 43 amostras de água subterrânea colhidas na Bacia Espanhola oriental, no Novo México (EUA), com o fim de identificar, em blocos montanhosos, a recarga com águas com idade <10 mil anos (ka) e de avaliar possíveis alterações da recarga nos blocos montanhosos nos últimos ∼35 ka. Para as amostras do Holocénico provenientes da região sudeste, as TGN são dominantemente 2–4° mais baixas do que a temperatura da água freática perto da frente da montanha. As fracções de recarga mínima proveniente dos blocos montanhosos que foram calculadas são dominantemente 0.2–0.5, consistentes com anteriores estimativas de recarga em grandes blocos montanhosos. As TGN não apresentam a distinta diminuição durante o último máximo glaciar observada em outros estudos de paleorecarga; as amostras recarregadas há 15–25 ka são em média somente 1.3° mais frias que as amostras holocénicas. Em vez disso, as amostras que apresentam as TGN mais baixas foram recarregadas há 25–35 ka. Uma explicação que se propõe é que as taxas mais altas de precipitação durante o último máximo glaciar terão ocorrido numa altitude mais baixa de recarga média na bacia, amortecendo essencialmente o efeito da temperatura média anual do ar mais baixa e produzindo TGN similares às do Holocénico. No período precedente ao último máximo glaciar, as taxas de precipitação, provavelmente semelhantes às actuais, criaram fracções de recarga nos blocos montanhosos parecidas com as do Holocénico, e produziram TGN ∼5° mais frias que no Holocénico, tal como esperado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour Res 35:2779–2792

    Article  Google Scholar 

  • Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Paleotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405:1040–1043

    Article  Google Scholar 

  • Allen BD, Anderson RY (2000) A continuous, high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico. Geol Soc Am Bull 112(9):1444–1458

    Article  Google Scholar 

  • Althaus R, Klump S, Onnis A, Kipfer R, Purtschert R, Stauffer F, Kinzelbach W (2009) Noble gas tracers for characterisation of flow dynamics and origin of groundwater: a case study in Switzerland. J Hydrol 370:64–72

    Article  Google Scholar 

  • Anderholm SK (1994) Ground-water recharge near Santa Fe, north-central New Mexico. US Geol Surv Water Resour Invest Rep 94–4078:68

    Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J Hydrol 41:233–252

    Article  Google Scholar 

  • Ballentine CJ, Hall CM (1999) Determining paleotemperature and other variables by using an error-weighted, nonlinear inversion of noble gas concentrations in water. Geochim Cosmochim Acta 63:2315–2336

    Article  Google Scholar 

  • Blasch KW, Bryson JR (2007) Distinguishing sources of groundwater recharge by using δ2H and δ18O. Groundwater 45:294–308

    Google Scholar 

  • Bouchaou L, Michelot JL, Vengosh A, Hsissou Y, Qurtobi M, Gaye CB, Bullen TD, Zuppi GM (2008) Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. J Hydrol 352:267–287

    Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Carrara PE, Mode WN, Rubin M, Robinson SW (1984) Deglaciation and postglacial timberline in the San Juan Mountains, Colorado. Quat Res 21:42–55

    Article  Google Scholar 

  • Carrera-Hernández JJ, Gaskin SJ (2008) Spatio-temporal analysis of potential aquifer recharge: application to the Basin of Mexico. J Hydrol 353:228–246

    Google Scholar 

  • Castro MC, Hall CM, Patriarche D, Goblet P, Ellis BR (2007) A new noble gas paleoclimate record in Texas: basic assumptions revisited. Earth Planet Sci Lett 257:170–187

    Article  Google Scholar 

  • Cederberg JR, Gardner PM, Thiros SA (2009) Hydrology of northern Utah Valley, Utah County, Utah, 1975–2005. US Geol Surv Sci Invest Rep 2008–5197:114

    Google Scholar 

  • Cey BD (2009) On the accuracy of noble gas recharge temperatures as a paleoclimate proxy. J Geophys Res 114:D04107. doi:10.1029/2008JD010438

    Article  Google Scholar 

  • Cey BD, Hudson GB, Moran JE, Scanlon BR (2009) Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer. Ground Water 47:646–659

    Article  Google Scholar 

  • Chowdhury AH, Uliana M, Wad S (2008) Groundwater recharge and flow characterization using multiple isotopes. Groundwater 46:426–436

    Google Scholar 

  • Christensen NS, Lettenmaier DP (2007) A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin. Hydrol Earth Syst Sci 11:1417–1434

    Article  Google Scholar 

  • Clark JF, Davisson ML, Hudson GB, Macfarlane PA (1998) Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. J Hydrol 211:151–167

    Article  Google Scholar 

  • Collins KA, Simmons AM, Robinson BA, Nylander CL (2005) Los Alamos National Laboratory’s hydrogeologic studies of the Pajarito Plateau: a synthesis of hydrogeologic workplan activities (1998–2004). Los Alamos Natl Lab Rep LA-14263-MS

  • Delinom RM (2009) Structural geology controls on groundwater flow: Lembang Fault case study, West Java, Indonesia. Hydrogeol J 17:1011–1023

    Article  Google Scholar 

  • Domenico PA, Schwartz FA (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • Edmunds WM, Ma J, Aeschbach-Hertig W, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, north west China. Appl Geochem 21:2148–2170

    Article  Google Scholar 

  • Galusha T, Blick JC (1971) Stratigraphy of the Santa Fe Group, New Mexico. Am Museum Nat Hist Bull 144:127

    Google Scholar 

  • Goodrich DC, Williams DG, Unkrich CL, Hogan JF, Scott RL, Hultine KR, Pool D, Coes AL, Miller S (2004) Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River basin, Arizona. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. American Geophysical Union, Washington, DC, pp 77–99

    Google Scholar 

  • Heaton THE, Vogel JC (1981) ‘Excess air’ in groundwater. J Hydrol 50:201–216

    Article  Google Scholar 

  • Hoffman JP, Blasch KW, Pool DR, Bailey MA, Callegary JB (2007) Estimated infiltration, percolation, and recharge rates at the Rillito Creek focused recharge investigation site, Pima County, Arizona. In: Stonestrom DA, Constantz J, Ferre TPA, Leake SA (eds) Ground-water recharge in the arid and semiarid southwestern United States. US Geol Surv Prof Pap 1703:185–220

  • Huntley D (1979) Groundwater recharge to the aquifers of northern San Luis Valley, Colorado. GSA Bull Part II 90:1196–1281

    Google Scholar 

  • Izbicki JA, Flint AL, Stamos CL (2008) Artificial recharge through a thick, heterogeneous unsaturated zone. Ground Water 46:475–488

    Article  Google Scholar 

  • Johnson PS (2009) Water-level elevation contours and ground-water-flow conditions (2000 to 2005) for the Santa Fe area, southern Española Basin, New Mexico. New Mexico Bur Geol Mineral Resour Open File Rep 520

  • Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 111–144

    Google Scholar 

  • Keating EH, Vesselinov VV, Kwicklis E, Lu Z (2003) Coupling basin-and site-scale inverse models of the Española Aquifer. Ground Water 41:200–211

    Article  Google Scholar 

  • Kebede S, Travi Y, Asrat A, Alemayehu T, Ayenew T, Tessema Z (2008) Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeol J 16:55–73

    Article  Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Reviews in mineralogy and geochemistry: noble gases in geochemistry and cosmochemistry, vol 47. Mineralogical Society of America, Chantilly, VA, pp 615–700

    Google Scholar 

  • Klump S, Tomonaga Y, Kienzler P, Kinzelbach W, Baumann T, Imboden DM, Kipfer R (2007) Field experiments yield new insights into gas exchange and excess air formation in natural porous media. Geochim Cosmochim Acta 71:1385–1397

    Article  Google Scholar 

  • Klump S, Grundl T, Purtschert R, Kipfer R (2008) Groundwater and climate dynamics derived from noble gas, 14C, and stable isotope data. Geology 36:395–398

    Article  Google Scholar 

  • Kohfahl C, Sprenger C, Herrera JB, Meyer H, Chacón FF, Pekdeger A (2008) Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: a field study in the Granada Basin (southern Spain). Appl Geochem 23:846–862

    Article  Google Scholar 

  • Kulongoski JT, Hilton DR, Izbicki JA, Belitz K (2009) Evidence for prolonged El Nino-like conditions in the Pacific during the late Pleistocene: a 43 ka noble gas record from California groundwaters. Quat Sci Rev 28:2465–2473

    Article  Google Scholar 

  • Lee JY, Hahn JS (2006) Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: implications for heat pumps. J Hydrol 329:514–526

    Article  Google Scholar 

  • Libby W (1952) Radiocarbon dating. University of Chicago Press, Chicago

    Google Scholar 

  • Magruder IA, Woessner WW, Running SW (2009) Ecohydrologic process modeling of mountain block groundwater recharge. Groundwater 47:774–785

    Google Scholar 

  • Manley K (1978) Cenozoic geology of the Española Basin. In: Guidebook to the Rio Grande Rift in New Mexico and Colorado New Mexico Bur Mines Mineral Resour Circ 163:201–210

    Google Scholar 

  • Manley K (1979) Stratigraphy and structure of the Española Basin, Rio Grande Rift, New Mexico. In: Riecker RE (ed) Rio Grande Rift: tectonics and magmatism. American Geophysical Union, Washington, DC, pp 71–86

    Google Scholar 

  • Manning AH (2009) Ground-water temperature, noble gas, and carbon isotope data from the Española Basin, New Mexico. US Geol Surv Sci Invest Rep 2008–5200:69

    Google Scholar 

  • Manning AH, Caine JS (2007) Groundwater noble gas, age, and temperature signatures in an alpine watershed: valuable tools in conceptual model development. Water Resour Res 43:W04404. doi:10.1029/2006WR005349

    Article  Google Scholar 

  • Manning AH, Solomon DK (2003) Using noble gases to investigate mountain-front recharge. J Hydrol 275:194–207

    Article  Google Scholar 

  • Manning AH, Solomon DK (2004) Constraining mountain-block recharge to the eastern Salt Lake Valley, Utah with dissolved noble gas and tritium data. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. American Geophysical Union, Washington, DC, pp 139–158

    Google Scholar 

  • Mazor E (1991) Applied chemical and isotopic groundwater hydrology. Halsted, New York

    Google Scholar 

  • McAda DP, Wasiolek M (1988) Simulation of the regional geohydrology of the Tesuque Aquifer system near Santa Fe, New Mexico. US Geol Surv Water Resour Invest Rep 87–4056:69

    Google Scholar 

  • Moore SJ (2007) Streamflow, infiltration, and recharge in Arroyo Hondo, New Mexico. In: Stonestrom DA, Constantz J, Ferre TPA, Leake SA (eds) Ground-water recharge in the arid and semiarid southwestern United States. US Geol Surv Prof Pap 1703:137–155

  • Nimmo JR, Deason JA, Izbicki JA, Martin P (2002) Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin site. Water Resour Res 38(10):1215. doi:10.1029/2001WR000735

    Article  Google Scholar 

  • Phillips FM, Peeters LA, Tansey MK, Davis SN (1986) Paleoclimatic inferences from an isotopic investigation of groundwater in the central San Juan Basin, New Mexico. Quat Res 26:179–193

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. US Geol Surv Water Resour Invest Rep 94–4169:130

    Google Scholar 

  • Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03–4131:395

    Google Scholar 

  • Plummer LN, Bexfield LM, Anderhohm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J 12:359–388

    Article  Google Scholar 

  • Smith GI, Street-Perrott FA (1983) Pluvial lakes of the western United States. In: Wright HE (ed) Late quaternary environments of the United States, vol 1. University of Minnesota Press, Minneapolis, MN, pp 190–212

    Google Scholar 

  • Spiegel Z, Baldwin B (1963) Geology and water resources of the Santa Fe area, New Mexico. US Geol Surv Water Suppl Pap 1525:258

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  • Stute M, Deak J (1989) Environmental isotope study (14 C, 13 C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to paleoclimate. Radiocarbon 31:902–918

    Google Scholar 

  • Stute M, Schlosser P (2000) Atmospheric noble gases. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 349–377

    Google Scholar 

  • Stute M, Sonntag C (1992) Paleotemperatures derived from noble gases dissolved in groundwater in relation to soil temperature. In: Isotopes of noble gases as tracers in environmental studies. IAEA, Vienna, pp 111–123

    Google Scholar 

  • Stute M, Schlosser P, Clark JF, Broecker WS (1992) Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science 256:1000–1003

    Article  Google Scholar 

  • Stute M, Clark JF, Schlosser P, Broeker WS, Bonani G (1995a) A 30,000 years continental paleotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quat Res 43:209–220

    Article  Google Scholar 

  • Stute M, Forster M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broeker WS, Bonani G (1995b) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269:379–383

    Article  Google Scholar 

  • Thomas JM, Hudson GB, Stute M, Clark JF (2003) Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada. Environ Geol 43:568–579

    Google Scholar 

  • Trauger FD (1967) Hydrology and general geology of the Pojoaque area, Santa Fe County, New Mexico. US Geol Surv Open File Rep 67–220:32

    Google Scholar 

  • Wasiolek M (1995) Subsurface recharge to the Tesuque Aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico. US Geol Surv Water Resour Invest Rep 94–4072:57

    Google Scholar 

  • Wilkins DW (1986) Geohydrology of the southwest alluvial basins: regional aquifer-systems analysis, parts of Colorado, New Mexico, and Texas. US Geol Surv Water Resour Invest Rep 84–4224:61

    Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Hogan JF, Phillips FM, Scanlon BR (eds) Groundwater recharge in a desert environment: the southwestern United States. American Geophysical Union, Washington, DC, pp 113–137

    Google Scholar 

  • Zuber A, Weise SM, Osenbruck K, Grabczak J, Ciezkowski W (1995) Age and recharge area of thermal waters in Ladek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. J Hydrol 167:327–349

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Los Alamos National Laboratory, the City of Santa Fe, and the US Geological Survey’s Rio Grande Basin Project. Major logistical assistance was also provided by the New Mexico Environment Department and the US Geological Survey’s New Mexico Water Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Manning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manning, A.H. Mountain-block recharge, present and past, in the eastern Española Basin, New Mexico, USA. Hydrogeol J 19, 379–397 (2011). https://doi.org/10.1007/s10040-010-0696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0696-8

Keywords