Skip to main content

Advertisement

Log in

Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: modeling of distributed recharge potential and identification of water pathways

Recharge de sédiments pléistocènes surmontant des aquifères basaltiques dans le Palouse Basin, USA : modélisation du potentiel de répartition de charge et identification de chenaux d’écoulement

La recarga de agua subterránea en los sedimentos Pleistocenos suprayacentes a acuíferos de basaltos en la Cuenca de Palouse, EEUU: modelado del potencial distribuida de la recarga y la identificación de las trayectorias de agua

卢斯盆地玄武岩含水层上覆更新世沉积物中的地下水补给 : 模拟潜在补给的分布并辨认地下水流动途径

Recarga em sedimentos do Plistocénico sobrejacentes a aquíferos basálticos na Bacia Palouse, EUA: modelação da distribuição da recarga potencial e identificação de percursos da água subterrânea

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater levels in basalt aquifers around the world have been declining for many years. Understanding water pathways is needed for solutions like artificial drainage. Water supply in the Palouse Basin, Washington and Idaho, USA, primarily relies on basalt aquifers. This study presents a combination of modeling and field observations to understand the spatial distribution of recharge pathways in the overlying Pleistocene sediments. A spatially distributed model was used to quantify potential recharge rates. The model shows clearly that recharge predominantly occurs through non-argilic soils and soils that are not underlain by fine-grained sediments, i.e. the upper area of the watershed. A field survey was conducted to determine recharge pathways from this area. It revealed 83  perennial springs. Drillings near springs showed connection of coarse-grained layers within the fine-grained Sediments of Bovill to these springs. Such layers, with streambed-like features, act as paleo-channels. Water from one of these coarse-grained layers had a similar electrical conductivity (200  μS  cm–1) to water from a downstream perennial spring, also suggesting the existence of a lateral conduit for deep percolation water.

Résumé

Le niveau des aquifères basaltiques est en déclin depuis de nombreuses années dans le monde. La connaissance des chenaux d’écoulement est nécessaire pour des solutions telles le drainage artificiel. L’alimentation en eau dans le Palouse Basin, Washington et Idaho, USA, repose principalement sur des aquifères basaltiques. Cette étude présente un croisement de modélisation et d’observations de terrain pour comprendre la distribution spatiale des conduits de recharge dans les sédiments pléistocènes sus jacents. Un modèle avec distribution spatiale a été utilisé pour quantifier potentiel et taux de recharge. Le modèle montre clairement que la recharge a lieu principalement à travers des sols non argileux et des sols ne reposant pas sur des sédiments à grain fin, i.e. la zone supérieure de séparation des eaux. Une étude de terrain a été menée pour déterminer les conduits de recharge de cette zone. Elle a révélé 83 sources pérennes. Des forages proches des sources ont montré leur connexion à des couches à grain grossier dans la formation Sediments of Bovil à grain fin. De telles couches, avec des caractéristiques analogues à des chenaux, se comportent comme paléo chenaux. L’eau de l’une de ces couches à grain fin a une conductivité électrique (200 μS cm–1) similaire à l’eau d’une source pérenne aval, ce qui suggère aussi l’existence de conduit pour l’eau de percolation profonde.

Resumen

Los niveles de agua subterránea en acuíferos basálticos alrededor del mundo han estado declinando por muchos años. Es necesario entender las trayectorias del agua para promover soluciones como el drenaje artificial. El abastecimiento de agua en la cuenca de Palouse, Washington y Idaho, EEUU, descansa básicamente en acuíferos basálticos. Este estudio presenta una combinación de observaciones de campo y modelado para entender la distribución especial de las trayectorias de la recarga en los sedimentos Pleistocenos suprayacentes. Un modelo espacialmente distribuido fue usado para cuantificar los ritmos potenciales de recarga. El modelo muestra claramente que la recarga ocurre predominantemente a través de suelos no argílicos y suelos que no están apoyados en sedimentos de grano fino, esto es, el área superior de la cuenca. Se llevó a cabo un relevamiento de campo para determinar la trayectoria de la recarga en esta área. Dicho estudio reveló 83 manantiales perennes. Las perforaciones cercanas a los manantiales mostraron conexión de capas de grano grueso situadas dentro de los sedimentos de grano fino de Bovill con dichos manantiales. Tales capas, con aspectos similares a las de un lecho de río, actúan como paleocanales. El agua proveniente de una de estas capas de grano grueso tienen una conductividad eléctrica similar (200 μS cm–1) al agua proveniente de un manantial perenne agua abajo, lo que también sugiere la existencia de conductos laterales para la percolación profunda del agua.

摘要

世界各地玄武岩含水层地下水水位多年来都处于持续下降状态。掌握地下水流动途径可以解决很多问题例如人工排水。包括美国华盛顿州和爱达荷州, 帕卢斯盆地的地下水供给主要依靠玄武岩含水层。本文结合模拟和野外两个方面工作以掌握玄武岩含水层上覆更新世沉积物中地下水补给途径的空间分布规律。利用空间分布式模型定量计算潜在补给速率。模型表明大部分补给通过粘土, 以及未被细粒沉积物覆盖的土壤即流域上游地区补给地下水。野外调查用于确定该地区的补给途径。野外工作揭示了该地区的83个常年性泉眼。泉周边钻孔显示泉口出露点位置与细粒沉积层中的粗粒层的联系。这些粗粒层具有河床的特点, 可能是古河道。其中一处粗粒层的地下水样品的电导率(200 μS cm–1)与下游常年性泉水的电导率相近, 同时揭示了深部地下水侧向流动的存在。

Resumo

Os níveis piezométricos nos aquíferos basálticos têm vindo a decrescer desde há vários anos em todo o mundo. Entender os percursos da água subterrânea é absolutamente necessário para soluções como a drenagem artificial. O abastecimento de água na Bacia de Palouse, em Washington e Idaho, nos EUA, tem sido assegurado fundamentalmente por água proveniente de aquíferos basálticos. Para estudar a distribuição espacial dos padrões de recarga nos sedimentos sobrejacentes de idade plistocénica, é aplicada neste estudo uma metodologia que utiliza modelação baseada em dados observados no campo. Para quantificar as taxas de recarga potencial é utilizado um modelo espacialmente distribuído. O modelo mostra claramente que a recarga ocorre predominantemente em solos que não contêm argila e em solos onde não existe sobreposição de sedimentos de granulometria fina, isto é, na camada superior da bacia. Para determinar os percursos onde ocorre recarga foi realizado um estudo no campo que revelou existirem 83 nascentes perenes. Sondagens executadas perto das nascentes revelaram existir conexões entre camadas de granulometria grosseira dentro dos sedimentos finos de Bovill com aquelas exsurgências. Tais camadas, com características semelhantes a leito de rio, agem como paleo-canais. A água de uma destas camadas de características grosseiras possuía uma condutividade eléctrica similar (200 μS cm–1) à água de uma nascente perene localizada a jusante, sugerindo igualmente a existência de uma conduta lateral com percolação profunda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barker RA (1979) Computer simulation and geohydrology of a basalt aquifer system in the Pullman-Moscow basin. Water Supply Bulletin 48, Washington Dept. of Ecol., Moscow, ID

    Google Scholar 

  • Barker RJ (1981) Soil survey of Latah County area, Idaho. US Department of Agriculture, Soil Conservation Service, Moscow, ID, 166pp.

  • Barnes BS (1939) The structure of discharge-recession curves. Trans AGU 20:721–725

    Google Scholar 

  • Bauer HH, Vaccaro JJ (1990) Estimates of ground-water recharge to the Columbia Plateau regional aquifer system, Washington, Oregon, and Idaho, for predevelopment and current land-use conditions. US Geol Surv Water Resour Invest Rep 88-4108, 37 pp

  • Brooks ES, Boll J (2002) Evaluation of a distributed hydrology model to support restoration efforts in small watersheds with limited data: from research scale to management scale. IHP Tech Doc Hydrol 67:231–236

    Google Scholar 

  • Brooks ES, Boll J (2005) A simple GIS-based snow accumulation and melt model. Proceedings of the 2005 Western Snow Conference, Great Falls, MT, 11–14 April 2005

  • Brooks ES, Boll J, McDaniel PA (2004) An experiment to determine the lateral saturated hydraulic conductivity. Water Resour Res 40, W04208. doi:10.1029/2003WR002858

    Article  Google Scholar 

  • Brooks ES, Boll J, McDaniel PA (2007) Distributed and integrated response of a geographic information system-based hydrologic model in the eastern Palouse region, Idaho. Hydrol Process 21:110–122

    Article  Google Scholar 

  • Brutsaert W, Nieber JL (1977) Regionalized drought flow hydrographs from a mature glacial plateau. Water Resour Res 13(3):637–643

    Article  Google Scholar 

  • Busacca AJ, McDonald EV (1994) Regional sedimentation of late Quaternary loess on the Columbia Plateau: sediment source areas and loess distribution patterns. In: Lasmanis R,Cheney ES (eds) Regional geology of Washington State. Bulletin 80, Washington Division of Geology and Earth Resources, Olympia, WA, pp 181–190

  • Bush JH, Garwood DL (2004) Unpublished west–east geological cross section of the Palouse Basin. Prepared for the Palouse Basin Aquifer Committee, Moscow, ID

    Google Scholar 

  • Bush JH, Provant AP, Gill SW (1998) Bedrock geological map of the Moscow West Quadrangle, Latah County, Idaho and Whitman County. USGS, NOAA, Washington, DC

    Google Scholar 

  • Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study. J Hydrol 330(3–4):506–524

    Article  Google Scholar 

  • Das KN, Ars CR (1971) Groundwater recharge techniques for the Deccan Trap Aquifer formations. Bull Volcanol 35(3):641–650

    Article  Google Scholar 

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10 1:5–17

    Article  Google Scholar 

  • El-Naqa A, Al-momani M, Kilani S, Hammouri N (2007) Groundwater deterioration of shallow groundwater aquifers due to overexploitation in Northeast Jordan. Clean 35(2):156–166

    Google Scholar 

  • Fairley JP, Solomon MD, Hinds JJ, Grader GW, Bush JH, Rand AL (2006) Latah County hydrologic characterization project, final report. Idaho Department of Water Resources, Moscow, ID. Available at http://www.webs.uidaho.edu/pbac/pubs/HCP_FinalReport.pdf. Cited 14 February 2009

  • Foglia L, Hill MC, Mehl SW, Burlando P (2009) Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resour Res 45, W06427. doi:10.1029/2008WR007255

    Article  Google Scholar 

  • Foxworthy BL, Washburn RL (1963) Ground water in the Pullman area, Whitman County. US Geol Surv Water Suppl Pap 1655

    Google Scholar 

  • Hargreaves GL, Hargreaves GH, Riley JP (1985) Irrigation water requirements for Senegal River Basin. J Irrig Drain Eng 111(3):265–275

    Article  Google Scholar 

  • Hosterman JW, Scheid VE, Allen VT, Sohn IG (1960) Investigations of some clay deposits in Washington and Idaho. US Geol Surv Bull 1091:147

    Google Scholar 

  • Johnson MS, Coon WF, Mehta VK, Steenhuis TS, Brooks ES, Boll J (2003) Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. J Hydrol 284(1):57–76

    Article  Google Scholar 

  • Kulkarni H, Deolankar SB, Lalwani A, Joseph B, Pawar S (2000) Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeol J 8:368–378

    Article  Google Scholar 

  • Larson KR, Keller CK, Larson PB, Allen-King RM (2000) Water resource implications of 18O and 2 H distributions in a basalt aquifer system. Ground Water 38(6):947–953

    Article  Google Scholar 

  • Lin C (1967) Factors affecting groundwater recharge in the Moscow basin, Latah County, Idaho. MSc Thesis, Washington State Univ., USA

  • Lin H, Brooks ES, McDaniel PA, Boll J (2008) Hydropedology and surface/subsurface runoff processes. In: Anderson MG (ed) Encyclopedia of hydrologic sciences. Wiley, Chichester, UK

  • McDaniel PA, Gabehart RW, Falen AL, Hammel JE, Reuter RJ (2001) Perched water tables on agrixerol and fragixeralf hillslopes. Soil Sci Soc Am J 65:805–810

    Article  Google Scholar 

  • McDaniel PA, Regan MP, Brooks ES, Boll J, Barndt S, Falen A, Young SK, Hammel JE (2008) Linking fragipans, perched water tables, and catchment-scale hydrological processes. Catena 73:166–173

    Article  Google Scholar 

  • Mehta VK, Walter MT, Brooks ES, Steenhuis TS, Walter MF, Johnson M, Boll J, Thongs D (2004) Application of SMR to modeling watersheds in the Catskill Mountains. Envir Model Assess 9(2):77–89

    Article  Google Scholar 

  • Miller JA (1999) Ground Water Atlas of the United States. US Geological Survey, Reston, VA, 300 pp

  • Muniz HR (1991) Computer modeling of vadose zone groundwater flux at a hazardous waste site: MSc Thesis. Washington State University, USA, 140 pp

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting trough conceptual models, part I: a discussion of principles. J Hydrol (Amsterdam) 10:282–290

    Article  Google Scholar 

  • O’Geen AT, McDaniel PA, Boll J, Keller CK (2004) Paleosols as deep regolith: implications for ground-water recharge across a loessial climosequence. Geoderma 126:85–99

    Article  Google Scholar 

  • PRISM (2009) Parameter-elevation regressions on independent slopes model maps. Available at www.prism.oregonstate.edu. Cited 1 May 2009

  • Provant AP (1995) Geology and hydrogeology of the Viola and Moscow West quadrangles, Latah County, Idaho and Whitman County, Washington. MSc Thesis, University of Idaho, USA, 116 pp

    Google Scholar 

  • Ralston DR (2002) Hydrologic conditions in the Palouse aquifer. Presentation for the Community Water Project, Moscow, ID. Available at http://webcache.googleusercontent.com/search?q=cache:9p1YAz30YssJ:www.idwr.idaho.gov/Moscow/Ralston.ppt+ralston+palouse&cd=4&hl=nl&ct=clnk&gl=nl. Cited 13 February 2009

  • Reeves M (2009) Estimating Recharge Uncertainty using Bayesian Model Averaging and Expert Elicitation with Simple Implications. MSc Thesis, University of Idaho, USA, 73 pp

    Google Scholar 

  • Robischon S (2006) 2002–2005 Palouse groundwater basin use report. Palouse Basin Aquifer Committee, Moscow, Idaho. Available at www.webs.uidaho.edu/pbac/Annual_Report/Final_PBAC_Annual_Report_2006_hi_res.pdf. Cited 16 February 2008

  • Robischon S (2008) 2007 Palouse Ground water basin: water use report. Palouse Basin Aquifer Committee, Moscow, Idaho. Available at www.webs.uidaho.edu/pbac/Annual_Report/Final_PBAC_Annual_Report_2007_low_res.pdf. Cited 16 February 2008

  • Rosenberry DO (2008) A seepage meter designed for use in flowing water. J Hydrol 359:118–130

    Article  Google Scholar 

  • Stevens PR (1960) Ground-water problems in the vicinity of Moscow, Latah County, Idaho. US Geol Surv Water Suppl Pap 1460-H

  • UNESCO (2009) Water in a changing world. The United Nations World Water Development Report 3. UNESCO, Paris, 318 pp

  • Western Regional Climate Center (2009) Historical climate information. WRCC, Reno, NV. www.wrcc.dri.edu. Cited 28 October 2009

Download references

Acknowledgements

The authors wish to thank MSc students K. Petie, M. Kok, L. Woelders and I. de Graaf for carrying out research in the Palouse Basin, contributing to this manuscript. We thank Dr. J. Fairley (Department of Geological Sciences), and Dr. F. Fiedler (Civil Engineering Department), both from the University of Idaho for helpful comments on an earlier draft of the manuscript. The research was funded in the framework of the Wageningen Research School WIMEK-SENSE, and by USDA-HATCH project IDA01399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roel Dijksma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijksma, R., Brooks, E.S. & Boll, J. Groundwater recharge in Pleistocene sediments overlying basalt aquifers in the Palouse Basin, USA: modeling of distributed recharge potential and identification of water pathways. Hydrogeol J 19, 489–500 (2011). https://doi.org/10.1007/s10040-010-0695-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0695-9

Keywords

Navigation