Skip to main content
Log in

Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany

Estimation de la conductivité hydraulique d’un aquifère par mesures géoélectriques de surface, site-test de Krauthausen, Allemagne

Estimación de la conductividad hidráulica de un acuífero a partir de mediciones geoeléctricas de superficie para el sitio de ensayos de Krauthausen, Alemania

利用德国Krauthausen试验场表面地电测量对含水层渗透系数进行估计

Estimação da condutividade hidráulica do aquífero a partir de medições geoeléctricas superficiais para o local de ensaio de Krauthausen, Alemanha

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The physical explanation is presented for two types of theoretical equations which encompass a direct and an inverse relationship between the hydraulic conductivity and electrical resistivity of an aquifer. Using the theory of direct current (DC) resistivity prospecting, it is shown that a direct relation exists if the bulk of the current flow is in the vertical direction, whereas the inverse relation exists if the current is in the horizontal direction. Consequently, the relation in question is direct in the case of a relatively conducting basement and inverse in the case of a comparatively resistive basement. Then, the aquifer hydraulic conductivity for the hydrogeologically well-studied area of Krauthausen in Germany is estimated by two different techniques using surface geoelectrical data. The estimated values are compared with those conventionally determined by a pump test experiment and it can be concluded that the estimation is better whenever geoelectrical data are used.

Résumé

On présente l’explication physique de deux types d’équations théoriques qui concernent une relation directe et une relation inverse entre la conductivité hydraulique et la résistivité électrique d’un aquifère. En utilisant la théorie de la prospection par courant continu, on montre qu’il existe une relation directe si la plus grande partie du courant s’écoule verticalement alors que la relation est inverse si le courant s’écoule horizontalement. Par suite, la relation en question est directe dans le cas d’un substrat relativement conducteur et inverse dans le cas d’un substrat plus résistant. Ainsi, la conductivité hydraulique du secteur bien connu du point de vue hydrogéologique de Krauthausen en Allemagne, est estimée par deux techniques différentes en utilisant les données géoélectriques de surface. Les valeurs estimées sont comparées avec celles déterminées par un test de pompage conventionnel et on peut conclure que l’estimation est meilleure chaque que fois que des données géoélectriques sont utilisées.

Resumen

Se presenta la explicación física para dos tipos de ecuaciones teóricas que comprenden una relación directa y una inversa entre la conductividad hidráulica y la resistividad eléctrica de un acuífero. Usando la teoría de la prospeccion de resistividad por corriente continua (DC) se muestra que existe una relación directa si el grueso del flujo de corriente es en la dirección vertical mientras existe una relación inversa si la corriente es en la dirección horizontal. Consecuentemente la relación en cuestión es directa en el caso de un basamento relativamente conductivo e inversa en el caso de un basamento comparativamente resistivo. Por lo tanto la conductividad hidráulica para el área bien estudiada hidrogeológicamente de Krauthausen en Alemania se estima por dos técnicas diferentes usando datos geoeléctricos de superficie. Los valores estimados se comparan con aquellos convencionalmente determinados por experimentos de ensayos de bombeo y se puede concluir que la estimación es siempre mejor cuando se usan datos geoeléctricos.

摘要

本文得出了含水层渗透系数和电阻率之间的存在正比和反比关系两种理论公式, 并给出了物理解释。利用直流 (DC) 电阻率勘探理论, 如果大部分电流在垂直方向上则正相关关系存在, 反之如果电流在水平方向上则存在负相关关系。因此, 涉及的关系在相对导电基岩情况下成正比, 在相对阻电的基岩情况下成反比。然后利用表面地电数据的两种不同的技术对德国Krauthausen充分进行过水文地质研究的区域的含水层渗透系数进行估计。将估计值与利用抽水试验所得的常规结果相比, 结果表明, 无论是否应用地电数据, 该估计都较好。

Resumo

Apresenta-se a explicação física para dois tipos de equações teóricas referentes a relações, directa e inversa, entre a condutividade hidráulica e a resistividade eléctrica de um aquífero. Usando a teoria da prospecção geoeléctrica em corrente contínua (CC), é demonstrado que existe uma relação directa quando o principal sentido da corrente é vertical, enquanto a relação inversa ocorre quando a corrente flui na direcção horizontal. Consequentemente, a referida relação é directa no caso de um fundo relativamente condutor e inversa quando o fundo é comparativamente resistente. Em seguida, estima-se a condutividade hidráulica do aquífero na área de Krauthausen, na Alemanha, bem estudado do ponto de vista hidrogeológico, através de duas técnicas diferentes, utilizando dados geoeléctricos superficiais. Os valores estimados são comparados com os determinados de modo convencional, com base num ensaio de bombagem, permitindo concluir que as estimativas são melhores sempre que se utilizam dados geoeléctricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Archie GE (1942) The electrical resistivity log as aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–62

    Google Scholar 

  • Atkins ER, Smith GH (1961) The significance of particle shape in formation resistivity factor-porosity relationship. J Petrol Technol 13:285–291

    Google Scholar 

  • Borner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys Prospect 44:583–602

    Article  Google Scholar 

  • Clavier C, Coats G, Dumanoir J (1984) Theoretical and experimental bases for the dual water model for the interpretation of shaly sands. J Soc Petrol 4:153–168

    Google Scholar 

  • Domenico PA, Schwarz FW (1990) Physical and chemical hydrogeology. Wiley, Hoboken, NJ, 324 pp

  • Doring U (1997) Transport der reaktiven Stoffe Eosin, Uranin und Lithium in einem heterogenen Grundwasserleiter. Berichte des Forschungszentrums Julich, vol 3354 [Transport of the reactive materials Eosin, Uranin and Lithium in a heterogeneous groundwater aquifer, vol 3354]. Reports, Forschungszentrum Julich, Germany

  • Doveton JH (1986) Log analysis of subsurface geology. Wiley, New York

    Google Scholar 

  • Englert A (2003) Measurements, estimation and modeling of groundwater flow velocity at Krauthausen test site. PhD Thesis, RWTH Aachen, Germany

  • Ghosh DP (1971a) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys Prospect 19:192–217

    Article  Google Scholar 

  • Ghosh DP (1971b) Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophys Prospect 19:769–775

    Article  Google Scholar 

  • Hördt A, Blaschek R, Kemna A, Zisser N (2007) Hydraulic conductivity estimation from induced polarization data at the field scale: the Krauthausen case study. J Appl Geophys 62:33–46

    Article  Google Scholar 

  • Inman JR (1975) Resistivity inversion with ridge regression. Geophysics 40:798–817

    Article  Google Scholar 

  • Jackson PD, Taylor D, Smith PM (1978) Standard resistivity-porosity-particle shape relationships for marine sands. Geophysics 43:1250–1268

    Article  Google Scholar 

  • Kunetz G (1966) Principles of direct current resistivity prospecting. Borntraeger, Berlin, 101 pp

    Google Scholar 

  • Koefoed O (1979) Geosounding principles, 1: resistivity sounding measurements. Elsevier, Amsterdam

  • Kozeny J (1953) Hydraulics. Springer, Vienna

    Google Scholar 

  • Lines LR, Treitel S (1984) A review of least squares inversion and its application to geophysical problems. Geophys Prospect 32:159–186

    Article  Google Scholar 

  • Lynch EJ (1976) Formation evaluation. Harper and Row, New York

  • Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 3:529–556

    Article  Google Scholar 

  • Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Oxford

  • Mazac O, Kelly WE, Landa I (1985) A hydrogeophysical model for relation between electrical and hydraulic properties of aquifers. J Hydrol 79:1–19

    Article  Google Scholar 

  • Mazac O, Cislerova M, Kelly WE, Landa I, Venhodova D (1990) Determination of hydraulic conductivities by surface geoelectrical methods. In: Ward SH (ed) Geotechnical and environmental geophysics, vol II. SEG, Tulsa, OK, pp 125–131

  • Nix B (2005) Radiomagnetotellurik messungen zur räumlichen und zeitlichen ausbreitung eines grundwasser tracer. [Radiomagnetotelluric measurements for the detection of spatial and time variations of a groundwater tracer]. MSc Thesis, University of Cologne, Germany

  • Nix B, Tezkan B, Muller K, Kemna A (2005) Monitoring of groundwater tracer using radiomagnetotellurics (RMT). Near Surface 2005, September 2005, Palermo, Italy

  • Purvance DT, Andricevic R (2000) On the electric-hydraulic conductivity correlation in aquifers. Water Resour Res 36:2905–2913

    Article  Google Scholar 

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical method: a case study of Keritis Basin in Chania (Crete-Greece). J Hydrol 338:122–131

    Article  Google Scholar 

  • Niwas S, Singhal DC (1981) Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media. J Hydrol 50:393–399

    Article  Google Scholar 

  • Niwas S, Singhal DC (1985) Aquifer transmissivity of porous media from resistivity data. J Hydrol 82:143–153

    Article  Google Scholar 

  • Niwas S, Lima OAL (2006) Correlating electrical and hydraulic conductivity of a general aquifer model: concept and application. J Geol Soc India 67:730–736

    Google Scholar 

  • Niwas S, Gupta PK, Lima OAL (2006) Non-linear electrical response of shaly sandstone reservoir. Geophysics 71:129–133

    Article  Google Scholar 

  • Tezkan B, Saraev A (2007) A new radiomagnetotelluric device for environmental geophysics operating in the frequency range from 10 KHz-1 MHz. Extended abstract, 20. SAGEEP meeting, April 2007, Denver, CO

  • Tillman A, Englert A, Nyari Z, Fejes I, Vanderborght J, Vereecken H (2008) Characterization of subsoil heterogeneity, estimation of grain size distribution and hydraulic conductivity at the Krauthausen test site using cone penetration test. J Contam Hydrol 95:57–75

    Article  Google Scholar 

  • Thomas EC (1992) 50th Anniversary of the Archie equation: Archie left more than just an equation. The Log Analyst May–June:199–205

  • Vereecken H, Doring H, Hardelauf H, Jaekel H, Neuendorf O, Schwarze H, Seidermann R (1999) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment 1—experimental set up, sediment characterization and moment analysis. Internal report no. 500798. Forschungszentrum Julich, Julich, Germany

  • Vereecken H, Doring H, Hardelauf H, Jaekel H, Neuendorf O, Schwarze H, Seidermann R (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. J Contam Hydrol 45:329–358

    Article  Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. J Soc Petrol Eng 8:107–122

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Science and Technology (DST), Government of India, New Delhi and German Research Foundation (DFG), Bonn, Germany for providing research grants. The contribution of anonymous reviewers, the Associate Editor and the English editors, in bringing the manuscript to the present level, is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Niwas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niwas, S., Tezkan, B. & Israil, M. Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany. Hydrogeol J 19, 307–315 (2011). https://doi.org/10.1007/s10040-010-0689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0689-7

Keywords