Hydrogeology Journal

, Volume 19, Issue 2, pp 399–414 | Cite as

Submarine and coastal karstic groundwater discharges along the southwestern Mediterranean coast of Turkey

  • C. Serdar Bayari
  • N. Nur Ozyurt
  • Mehmet Oztan
  • Yalin Bastanlar
  • Guzden Varinlioglu
  • Hayati Koyuncu
  • Haldun Ulkenli
  • Serdar Hamarat
Report

Abstract

A 120 km-long part of the southwestern coast of Turkey, with well-developed karst terrain in contact with the sea, has been investigated by systematic diving surveys to determine the submarine groundwater discharges (SGDs). The physical, chemical and isotopic data have been used to determine the rate of the fresh groundwater end member (FEM) and its temporal dynamics. About 150 SGDs have been detected by diving surveys employed mostly up to a depth of 30 m below sea level (bsl). Among those, 15 SGDs are in the form of coastal or submarine caves with entrances ranging between sea surface and 40 m bsl. The FEM contribution in SGDs ranges from a few percent to more than 80%. Stable isotope data suggest a range of mean recharge area elevations extending from the coast to more than 1,000 m inland. In many of the SGDs, the FEMs are characterized by tritium-based residence times ranging from recent to several decades. Hypothetical geochemical calculations of mixing between freshwater and seawater end members reveal that more than 45% of freshwater contribution is required for karst development in the SGDs. Models suggest a threshold pH of 7.6 or lower for the carbonate rock dissolution.

Keywords

Submarine groundwater discharge Hydrochemistry Karst Turkey Environmental isotopes 

Décharge sous-marine d’une nappe karstique côtière sur le littoral Sud-Ouest de la Turquie

Résumé

Une section littorale longue de 120 km du Sud-Ouest de la Turquie, avec un terrain karstique bien développé en contact avec la mer, a été explorée par plongées systématiques pour reconnaître les décharges sous-marines de nappe (SGDs). Les données physiques, chimiques et isotopiques ont été utilisées pour déterminer le taux d’eau douce des sections marines (FEM) et leur dynamique dans le temps. Environ 150 SGDs ont été découvertes par plongée d’exploration jusqu’à 30 m sour le niveau marin (bsl). Parmi elles, 15 SGDs sont en forme de gouffre côtier ou sous-marin avec des ouvertures s’échelonnant entre la surface et 40 m de profondeur. La contribution du FEM dans les décharges sous-marines de nappe (SGDs) s’échelonne de quelques pourcents à plus de 80 %. La donnée isotope stable suggère des altitudes moyennes d’aire de recharge s’échelonnant de la côte à plus de 1000 m en terre. Dans de nombreuses SGDs, les FEMS sont caractérisées par des temps de séjour tritium s’échelonnant de l’actuel à plusieurs décades. Des calculs géochimiques simulant mélange entre eau douce et eau des sections marines révèlent que plus de 45 % de contribution d’eau douce est nécessaire pour le développement du karst dans les décharges sous-marines de nappe (SGDs). Des modèles suggèrent un seuil pH de 7.6 ou inférieur pour la dissolution de la roche carbonatée.

Descarga de agua subterránea kárstica submarina y costera a lo largo de la costa mediterránea sudoccidental de Turquía

Resumen

Se ha investigado una parte de la costa sudoccidental de Turquía de 120 km-de longitud, con un terreno kárstico en contacto con el mar, a través de un relevamiento sistemático de buceo para determinar la descarga submarina de agua subterránea (Sgos.). Los datos físicos, químicos e isotópicos han sido utilizados para determinar el ritmo del agua subterránea dulce en el extremo final. (FEM) y su dinámica temporal. Se han detectado alrededor de 150 SGDs por relevamiento de buceo practicados hasta una profundidad de 30 m debajo del nivel del mar (bsl). Entre aquellos, 15 SGDs están en la forma de cuevas submarinas o costeras con entradas variando entre el nivel del mar y 40 m bsl. La contribución del FEM en los SGDs varía entre un escaso porcentaje a más del 80%. Los datos de isótopos estables sugieren un intervalo de elevaciones de recarga media que se extiende a más de 1000 m hacia el continente. En muchos de los SGDs, los FEMs están caracterizados por tiempos de residencia basados en el tritio que van desde el reciente a varias décadas. Cálculos geoquímicos hipotéticos de mezcla entre agua dulce y agua de mar en el extreme final revelan que se requieren más del 45% de agua dulce para el desarrollo de karst en los SGDs. Los modelos sugieren un pH umbral de 7.6 o menor para la disolución de las rocas carbonáticas.

الينابييع التى تضخ المياه الجوفيه التحت بحريه فى المناطق الممتدة على الساحل الجنوب الغربى للبحر المتوسط فى تركيه

الخلا صه

120 كم من المناطق التى تمتد على الساحل الجنوب الغربى للبحر المتوسط فى تركيه تتميز بلاحجار الجيريه و التظاريس الارضيه ذات المجاري الجوفيه المتطورة. هذة المنطقه قد بحثت لأستكشاف و لتعيين الينابييع التى تضخ المياه الجوفيه فى المناطق التحت بحريه باستعمال طريقة الغطس المساحى المنسق. المعلومات التى قد اخذت من التحاليل الفيزيائيه والكميائيه و تحاليل النظائر قد استعملت لتعيين العنصرالاخر لنسبه المياة الجوفية العذبة والتغيير الدناميكى المؤقت لهذة النسبة. حوالى 150 نبع تحت بحرى قد استكشف خلال الغطس المساحى المنسق تضخ على عمق 30 م من مستوى البحر. بجانب هذة الينابيع, يوجد 15 نقطة تشكل مغارات ساحلية أوتحت بحرية ذات مداخل تضغ المياة الجوفية من مستوى البحر و من اعماق تصل الى 40 م تحت المستوى البحرى. نسبه المياة الجوفية العذبة التى تضخ من الينابيع التحت بحرية تتغير من نسبة قليله الى حوالى 80%. النظائر المستقرة أثبتت أن منطقة التغذية الرئيسية لهذة الينابيع التحت بحرية نبدء من المنطقة الساحلية و تتغير الى حوالى 1000 م داخل المنطقة الارضية. تحاليل العنصرالأخير للنظائر فى نسبة التريتيم اثبتت أن هذة المياة تتغيير من مياة حديثة الى مياة قديمة التشكيل. نظرية الحسابات الجيوكميائية للعنصرالأخير بين نسبة المياة الجوفية العذبة و المياة البحرية أثبتت أندماج أو خلط حوالى 45% من المياة الجوفية يسبب تغيير مميزفى تطور المجاري الجوفيه للينابيع التحت بحرية. تطبيق هذا النموذج أثبت أن الدرجة الحمضية المطلوبة للتعمل الكيميائي وأذابة الأحجار الجيرية تتغير الى أقل من7.6.

Descargas cársicas costeiras e submarinas de águas subterrâneas ao longo da costa mediterrânea do sudoeste da Turquia

Resumo

Uma boa parte da costa sudoeste da Turquia, 120 km, com carso bem desenvolvido e em contacto com o mar, tem sido investigada de forma sistemática por campanhas de mergulho, para determinar as descargas submarinas de águas subterrâneas (DSAS). Os dados físicos, químicos e isotópicos têm sido utilizados para determinar a componente das águas doces subterrâneas e sua dinâmica temporal. Através das campanhas de mergulho levadas a efeito até uma profundidade de 30 m abaixo do nível do mar, foram detectadas cerca de 150 descargas submarinas de água subterrâneas (DSAS). Entre aquelas, 15 DSAS estão na forma de cavernas costeiras ou submarinas, com entradas que variam entre a superfície do mar e 40 m abaixo do nível do mar. A contribuição da componente de águas doces subterrâneas nas DSAS varia no intervalo de alguns pontos percentuais até mais de 80%. Dados de isótopos estáveis sugerem como área média de recarga uma série de elevações que se estendem desde a costa até mais de 1000 m para o interior. Em muitas das DSAS, a componente de água doce subterrânea é caracterizada por tempos de residência, baseados no trítio, desde o recente até várias décadas. Cálculos geoquímicos teóricos de mistura entre as componentes de água doce e água salgada revelam que mais de 45% de contribuição de água doce é necessária para o desenvolvimento do carso nas descargas submarinas de águas subterrâneas (DSAS). Modelos sugerem um limite de pH de 7.6 ou menor para a dissolução da rocha carbonatada.

Cубмapиннaя и пpибpeжнaя paзгpузкa кapcтoвыx вoд вдoль югo-зaпaднoгo cpeдизeмнoмopcкoгo пoбepeжья Tуpции

Абстракт

120-килoмeтpoвый учacтoк югo-зaпaднoгo пoбepeжья Tуpции, гдe paйoн xopoшo paзвитoгo кapcтa кoнтaктиpуeт c мopeм, иccлeдoвaлcя c иcпoльзoвaниeм cиcтeмaтичecкoй пoдвoднoй cъeмки в цeляx oпpeдeлeния cубмapинныx выxoдoв пoдзeмныx вoд (CBПB). Физичecкиe, xимичecкиe и изoтoпныe дaнныe иcпoльзoвaлиcь для oпpeдeлeния pacxoдa пpecнoвoднoй cocтaвляющeй и ee вpeмeннoй динaмики. Лeгкoвoдoлaзными oбcлeдoвaниями в диaпaзoнe глубин в ocнoвнoм дo 30 м нижe уpoвня мopя былo oбнapужeнo oкoлo 150 CBПB. Из ниx 15 CBПB имeют вид пpибpeжныx или пoдвoдныx пeщep c вxoдaми, pacпoлoжeнными в диaпaзoнe oт уpoвня мopя дo глубины 40 м. Bклaд пpecнoвoднoй cocтaвляюшeй в CBПB вapьиpуeт oт нecкoлькиx пpoцeнтoв дo 80%. Дaнныe пo cтaбильным изoтoпaм cвидeтeльcтвуют o вapиaцияx cpeдниx выcoт oблacтeй питaния oт пoбepeжья дo бoлee чeм 1000 м в глубинe cуши. Bo мнoгиx CBПB пpecнoвoднaя cocтaвляющaя xapaктepизуeтcя тpитиeвым вoзpacтoм (вpeмeнeм нaxoждeния в cиcтeмe) oт нeдaвнeгo дo нecкoлькиx дecяткoв лeт. Гипoтeтичecкиe гeoxимичecкиe pacчeты cмeшeния пpecныx и мopcкиx кoмпoнeнт пoкaзывaют, чтo для paзвития кapcтa в CBПB тpeбуeтcя cвышe 45% пpecнoвoднoй cocтaвляющeй. Moдeли укaзывaют нa pH нижe пopoгa 7.6 для pacтвopeния кapбoнaтныx пopoд.

Cубмapiннe тa пpибepeжнe poзвaнтaжeння кapcтoвиx вoд уздoвж пiвдeннo-зaxiднoгo cepeдзeмнoмopcькoгo узбepeжжя Tуpeччини

Резюме

120-кiлoмeтpoвa дiлянкa пiвдeннo-зaxiднoгo узбepeжжя Tуpeччини, дe paйoн дoбpe poзвинeнoгo кapcту кoнтaктує з мopeм, дocлiджувaвcя з викopиcтaнням cиcтeмaтичнoї пiдвoднoї зйoмки у цiляx визнaчeння cубмapiнниx виxoдiв пiдзeмниx вoд (CBПB). Фiзичнi, xiмiчнi тa iзoтoпнi дaнi були зacтocoвaнi для визнaчeння витpaти пpicнoвoднoї cклaдoвoї тa її чacoвoї динaмiки. Лeгкoвoдoлaзними oбcтeжeннями у дiaпaзoнi глибин здeбiльшoгo дo 30 м нижчe piвня мopя булo виявлeнo близькo 150 CBПB. З ниx 15 CBПB мaють вигляд пpибepeжниx aбo пiдвoдниx пeчep iз вxoдaми, poзтaшoвaними в дiaпaзoнi вiд piвня мopя дo глибини 40 м. Bнecoк пpicнoвoднoї cклaдoвoї у CBПB вapiює вiд дeкiлькox вiдcoткiв дo 80%. Дaнi пo cтaбiльниx iзoтoпax cвiдчaть пpo вapiaцiї cepeднix виcoт oблacтeй живлeння вiд узбepeжжя дo бiльш нiж 1000 м у глибинi cуши. У бaгaтьox CBПB пpicнoвoднa cклaдoвa xapaктepизуєтьcя тpитiєвим вiкoм (чacoм знaxoджeння в cиcтeмi) вiд нeдaвньoгo дo дeкiлькox дecяткiв poкiв. Гiпoтeтичнi гeoxiмiчнi poзpaxунки змiшaння пpicниx i мopcькиx кoмпoнeнтiв пoкaзують, щo для poзвитку кapcту у CBПB пoтpiбнo пoнaд 45% пpicнoвoднoї cклaдoвiй. Moдeлi вкaзують нa pH нижчe пopoгa 7.6 для poзчинeння кapбoнaтниx пopiд.

Supplementary material

10040_2010_677_MOESM1_ESM.pdf (241 kb)
ESM(PDF 240 kb)

References

  1. Al Charideh AR (2007) Environmental isotopic and hydrochemical study of water in the karst aquifer and submarine springs of the Syrian coast. Hydrogeol J 15:351–364CrossRefGoogle Scholar
  2. APHA AWWA, WPCF (1989) Standard methods for the analysis of water and wastewater, 17th edn. APHA, Washington, DCGoogle Scholar
  3. Back W, Freeze RA (1983) Chemical hydrogeology. In: Benchmark Papers in Geology, vol 73. Hutchinson Ross, Stroudsburg, PA, 416 ppGoogle Scholar
  4. Back W, Hanshaw BB (1971) Rates of physical and chemical processes in a carbonate aquifer. In: Hem JD (ed) Nonequilibrium systems in natural water chemistry. Advances in Chemistry series, no. 106. American Chemical Society, Washington, DC, pp 77–93CrossRefGoogle Scholar
  5. Bakalowicz M, El Hakim M, El-Hajj A (2008) Karst groundwater resources in the countries of eastern Mediterranean: the example of Lebanon. Environ Geol 54:597–604CrossRefGoogle Scholar
  6. Bayari CS (1986) Karst hydrogeological investigation of the Upper Esencay Basin (in Turkish). MSc Thesis, Hacettepe University Institute of Pure and Applied Sciences, Turkey, 363 ppGoogle Scholar
  7. Bayari CS (1991) Karst hydrogeological investigation of the Lower Zamanti Basin (Aladaglar) (in Turkish). PhD Thesis, Hacettepe University Institute of Pure and Applied Sciences, Turkey, 245 pp)Google Scholar
  8. Bayari CS, Kurttas T (2002) Coastal and submarine karstic discharges in the Gökova Bay, SW Turkey. Q J Eng Geol Hydrogeol 35:381–390CrossRefGoogle Scholar
  9. Bayari CS, Ozyurt NN, Hamarat S, Bastanlar Y, Varinlioglu G (2007) Recovery of fresh water discharges along Turkish coast: Patara-Tekirova Pilot Project (in Turkish). TUBITAK Project report no. CAYDAG-103Y025, Ankara, TurkeyGoogle Scholar
  10. Bayari CS, Ozyurt NN, Kilani S (2009) Radiocarbon age distribution of groundwater in the Konya Closed Basin, central Anatolia, Turkey. Hydrogeol J 17:347–365CrossRefGoogle Scholar
  11. Bögli A (1964) Mischungskorrosion: ein Beitrag zum Verkarstungsproblem [Mixture corrosion: a contribution to the karst problem]. Erdkunde 18:83–92Google Scholar
  12. Bögli A (1980) Karst hydrology and physical speleology, Springer, Heidelberg, 286 ppGoogle Scholar
  13. Burnett TM, Cable JE Turner JV WC (2002) Investigation of submarine groundwater discharge. Hydrol Proc 16:2115–2129CrossRefGoogle Scholar
  14. Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt NN, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543CrossRefGoogle Scholar
  15. Coskun N (1978) Hydrogeologic investigation report of the Antalya-Kas-Kalkan Town (in Turkish). DSI open file report, DSI, Ankara, Turkey, 23 ppGoogle Scholar
  16. Day A (2002) Cave surveying. Cave Studies Series 11. British Cave Research Assoc., Buxton, UK, 40 ppGoogle Scholar
  17. Dreybrodt W (1990) The role of dissolution kinetics in the development of karstification in limestone: a model simulation of karst evolution. J Geol 98:639–655CrossRefGoogle Scholar
  18. Dreybrodt W, Gabrovsek F (2003) Basic processes and mechanisms governing the evolution of karst. In: Gabrovsek F (ed) (2002) Evolution of karst: from prekarst to cessation. Zalozba ZRC, Postojna-Ljubljana, Slovenia, pp 115–154Google Scholar
  19. DSI (1974) Hydrogeological investigation report of the Finike-Kumluca Region (in Turkish). Open file report, DSI, Ankara, Turkey, 35 ppGoogle Scholar
  20. Elhatib H (1987) Hydrogeological investigation of the Ovacik submarine springs by means of remote sensing technique. MSc Thesis, Hacettepe University Ankara, TurkeyGoogle Scholar
  21. Elhatib H (1992) Hydrogeological investigation of Kas-Kalkan Area and its vicinity. PhD Thesis, Hacettepe University Ankara, TurkeyGoogle Scholar
  22. Elhatib H, Günay G (1998) Karst hydrogeology of the Kas-Kalkan area. Environ Geol 36(1–2):150–158CrossRefGoogle Scholar
  23. Fleury P, Bakalowicz P, de Marsily G (2007) Submarine springs and coastal karst aquifers: a review. J Hydrol 339:79–92CrossRefGoogle Scholar
  24. Ford D, Williams P (1989) Karst geomorphology and hydrology. Chapman and Hall, London, 601 ppGoogle Scholar
  25. Günay G (1971) Determination of the origin of Ovacik submarine springs by means of natural isotopes. IAH Reunion de Tokyo, Mémoires tome 9, pp 136–139Google Scholar
  26. Güner IN (2009) Investigation of groundwater residence time distribution in the Upper Sakarya Basin by means of environmental tracers (in Turkish). PhD Thesis, Hacettepe University Ankara, TurkeyGoogle Scholar
  27. Hamarat S, Ulkenli H, Türe G, Bayari CS (1998) Investigation of the coast of Turkey: coastal caves of Aydicik-Tasucu (in Turkish). Book of proceedings, 2nd National Conference on the Management of Coastal Areas of Turkey, Ankara, September 1998, pp 81–90Google Scholar
  28. Hatipoglu Z, Motz L, Bayari CS (2009) Characterization of the groundwater flow system in the hillside and coastal aquifers of the Mersin-Tarsus region (Turkey). Hydrogeol J 17:1761–1778CrossRefGoogle Scholar
  29. Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36:1381–1391CrossRefGoogle Scholar
  30. Kazemi GA (2008) Editor’s message: Submarine groundwater discharge studies and the absence of hydrogeologists. Hydrogeol J 16:201–204CrossRefGoogle Scholar
  31. Kohout FA (1966) Submarine springs: a neglected phenomenon of coastal hydrology. J Hydrol 26:391–413Google Scholar
  32. Kohout FA (1977) Coastal and submarine springs of the Mediterranean Coast of Turkey. DSI technical report no. 15, DSI, Ankara, TurkeyGoogle Scholar
  33. Meric E, Avsar N, Yokes MB, Tugrul AB, Bayari CS, Ozyurt NN, Barut IF, Balkıs N, Uysal B, Kam E (2008) Morphological abnormalities in benthic foraminifers of the Antalya coast. Micropaleontology 54(3–4):241–276Google Scholar
  34. Mijatovic B (2007) The groundwater discharge in the Mediterranean karst coastal zones and freshwater tapping: set problems and adopted solutions. Environ Geol 51(5):737–742CrossRefGoogle Scholar
  35. Moore WS (1996) Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature 380:612–614CrossRefGoogle Scholar
  36. Oztan M (2004) Hydrogeological investigation of the coastal and submarine karstic discharges between Kalkan and Kekova (SW Turkey) (in Turkish). MSc Thesis, Hacettepe University Ankara, TurkeyGoogle Scholar
  37. Oztan M, Bastanlar Y, Varinlioglu G, Hamarat S, Ulkenli H, Ozyurt NN, Bayari CS (2004) Investigation of the Patara-Kekova freshwater discharges and the coastal and submarine caves (in Turkish). Book of proceedings, vol 2, Turkish Coasts 04, 4th National Conference on the Management of Coastal Areas of Turkey, 4–7 May 2004, Adana, Turkey, pp 815–824Google Scholar
  38. Ozyurt NN (2008a) Residence time distribution in the Kirkgoz karst springs (Antalya- Turkey) as a tool for contamination vulnerability assessment. Environ Geol 53(7):1571–1583CrossRefGoogle Scholar
  39. Ozyurt NN (2008b) Analysis of drivers governing temporal salinity and temperature variations in groundwater discharge from Altug Submarine Karst Cave (Kas-Turkey). Environ Geol 54:731–736CrossRefGoogle Scholar
  40. Ozyurt NN, Bayari CS (2005a) Steady and unsteady state lumped parameter modeling of 3H and CFCs transport: hypothetical analyses and application to an alpine karst aquifer. Hydrol Proc 19(17):3269–3284CrossRefGoogle Scholar
  41. Ozyurt NN, Bayari CS (2005b) LUMPED Unsteady: a visual basic code of unsteady-state lumped-parameter models for residence time distribution analyses of groundwater systems. Comput Geosci 31(3):329–341CrossRefGoogle Scholar
  42. Ozyurt NN, Bayari CS (2008) Temporal variation of chemical and isotopic signals in major discharges of an Alpine karst aquifer in Turkey: implications with respect to response of karst aquifers to recharge. Hydrogeol J 16:297–309CrossRefGoogle Scholar
  43. Parkhurst DL (1995) User’s guide to PHREEQC: a computer program for speciation, Reaction-path, Advective-transport, and Inverse Geochemical Calculations. US Geol Surv Water Resour Invest Rep 95-4227, 143 ppGoogle Scholar
  44. SCOR and LOICZ (2006) Submarine groundwater discharge. UNESCO IHP-VI Series on Groundwater no. 5, IOC Manuals and Guides no. 44, UNESCO, ParisGoogle Scholar
  45. Senel M (1997a) Fethiye Plate, 1/25,0000 scale geological maps of Turkey (in Turkish). MTA, Ankara, Turkey, 26 ppGoogle Scholar
  46. Senel M (1997b) Antalya Plate, 1/25,0000 scale geological maps of Turkey (in Turkish). MTA, Ankara, Turkey, 25 ppGoogle Scholar
  47. Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Proc 16:2115–2129Google Scholar
  48. Younger PL (1996) Submarine groundwater discharge. Nature 382:121–122CrossRefGoogle Scholar
  49. Yurtsever Y (1980) Environmental isotopes as a tool in hydrogeological investigations of southern karst regions of Turkey. In: Günay G (ed) Proceedings of the International Seminar on Karst Hydrology. DSI-UNDP, Oymapinar, Turkey, pp 269–293Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Serdar Bayari
    • 1
  • N. Nur Ozyurt
    • 2
  • Mehmet Oztan
    • 2
  • Yalin Bastanlar
    • 3
  • Guzden Varinlioglu
    • 4
  • Hayati Koyuncu
    • 5
  • Haldun Ulkenli
    • 3
  • Serdar Hamarat
    • 3
  1. 1.International Research and Application Center For Karst Water ResourcesHacettepe UniversityAnkaraTurkey
  2. 2.Department of Geological Engineering, Hydrogeological Eng. SectionHacettepe UniversityAnkaraTurkey
  3. 3.Underwater Research Society, Cave Research and Diving GroupAnkaraTurkey
  4. 4.Department of Interior Architecture and Environmental DesignBilkent UniversityAnkaraTurkey
  5. 5.Jeodijital IncAnkaraTurkey

Personalised recommendations