Hydrogeology Journal

, Volume 18, Issue 6, pp 1497–1513 | Cite as

Stable isotopes (2H, 18O and 13C) in groundwaters from the northwestern portion of the Guarani Aquifer System (Brazil)

Report

Abstract

The groundwater flow pattern of the western part of the Guarani Aquifer System (GAS), Brazil, is characterized by three regional recharge areas in the north, and a potentiometric divide in the south, which trends north–south approximately. Groundwater flow is radial from these regional recharge areas toward the center of Paraná Sedimentary Basin and toward the western outcrop areas at the border of the Pantanal Matogrossense, because of the potentiometric divide. The isotopic composition of GAS groundwater leads to understanding the paleoclimatic conditions in the regional recharge areas. The δ18O and δ2H isotopic ratios of GAS groundwaters vary, respectively, from –9.1 to –4.8‰ V-SMOW and –58.4 to –21.7‰ V-SMOW. In the recharge zones, enriched δ18O values are observed, while in the confined zone lighter δ18O values are observed. These suggest that climatic conditions were 10°C cooler than the present during the recharge of these waters. The δ13C ratios in groundwater of GAS, in the study area, vary from –19.5 to –6.5‰ VPDB, increasing along the regional flow lines toward the confined zone. This variation is related to dissolution of carbonate cement in the sandstones.

Keywords

Guarani aquifer system Stable isotopes Hydrochemistry Paleoclimatic conditions Brazil 

Isotopes stables (2H, 18O et 13C) dans les eaux souterraines de la portion nord ouest du Système Aquifère Guarani (Brésil)

Resumé

Dans la portion occidentale du Système Aquifère Guarani (SAG), l’écoulement des eaux souterraines est caractérisé par l’existence de trois zones de recharge régionale, a partir de cellas les eaux souterraines s’ecoulent vers le centre du Basin du Paraná, et d’un diviseur d’eaux souterraines, situé dans le secteur sud et orienté approximativement dans le sens NS, qui contrôlê l’ecoulement vers les affleurements, situés sur les bords du Pantanal Matogrossense. La composition isotopique des eaux du SAG a été mesurée pour comprendre le paléoclimat existant dans les zones de recharge régionale. Les relations isotopique de δ18O et δ 2H pour les eaux du SAG varient de –9.1 à –4.8 ‰ V-SMOW et –58.4 à –21.7 ‰ V-SMOW, respecticvement. Valeurs plus riches de δ18O se trouvent dans les zones de recharges, mais des valeurs appauvries ont etês trouvées dans la zone de confinement. Cela suggère que des conditions climatiques plus froide que les actuels d’environ 10°C, se sont produites durant la recharge des ces eaux. Les valeurs de δ13C varient de –19.5 ‰ VPDB à –6.5 ‰ VPDB, augmentant le long des lignes regionales d’écoulement régionales vers la zone confinée. Cette variation est associée à la dissolution du cement carbonaté présent dans les grés.

Isótopos estables (2H, 18O e 13C) em las aguas subterráneas del sector noroeste del Sistema Acuífero Guaraní (Brasil)

Resumen

El patrón de flujo subterráneo en el sector occidental del Sistema Acuífero Guaraní (SAG) está caracterizado por tres áreas de recarga regionales ubicadas al norte del área de estudio y una divisoria de agua subterránea, de dirección aproximada NS, ubicada al sur. El patrón de flujo es radial desde las áreas de recarga hacia el centro de la cuenca Paraná y hacia las áreas de afloramiento ubicadas en los bordes del Pantanal Matogrosense. Este comportamiento es controlado por la existencia de la divisoria de agua. La composición isotópica de las aguas del SAG fue analizada con el objetivo de entender el paleoclima en las áreas de recarga. Las relaciones isotópicas δ18O e δ 2H varían entre –9.1 y –4.8‰ V-SMOW y entre –58.4 y –21.7‰ V-SMOW, respectivamente. Las áreas de recarga presentan los valores de δ18O más enriquecidos y las zonas de confinamiento los valores más empobrecidos, sugiriendo que las condiciones climáticas durante la recarga eran cerca de 10°C más frías que las actuales. Los valores de δ13C varían entre –19.5‰ VPDB y –6.5‰ VPDB, aumentando en la dirección del flujo regional hacia la zona confinada. Esta variación está asociada a la disolución del cemento carbonático presente en las areniscas.

巴西Guarani含水层西北部地下水的稳定同位素 (O–18、D和C–13)

摘要

巴西Guarani含水层系统 (GAS)西部的地下水流场在北侧有三个区域补给区, 南侧有一条接近南北向的测压水头分界线。由于该分界线的存在, 地下水流呈放射状从区域补给区流向Paraná沉积盆地中心和Pantanal Matogrossense边界的西部露头区。由GAS地下水的同位素组分可了解区域补给区的古气候情况。 GAS地下水的O–18和D比值变化较大, 分别为–9.1到–4.8%VSMOW和–58.4到–21.7‰VSMOW。在补给区, 观测到的O–18值较富集, 而在承压区 O–18值较小。这表示这些水补给期间的气候条件比现在冷10°C。GAS地下水的 C-13比值在–19.5‰到–6.5‰VPDB间变动, 且沿区域流线向承压区递增。这种变化与砂岩中碳酸盐胶结物的溶解有关。

Isótopos estáveis (2H, 18O and 13C) nas águas subterrâneas da porção noroeste do Sistema Aquífero Guarani (Brasil)

Resumo

O fluxo das águas subterrâneas na porção oeste do Sistema Aquífero Guarani (SAG), localizada em território brasileiro, é caracterizado pela existência de três áreas de recarga regional ao norte, e ao sul pela existência de um divisor de águas subterrâneas, cujo sentido é aproximadamente norte–sul. Devido a existência deste divisor de água o fluxo das águas subterrâneas a partir das áreas de recarga regionais é radial, parte do fluxo é direcionado para o centro da Bacia Sedimentar do Paraná, e parte para as faixas de afloramentos das unidades constituintes do aquífero, localizadas na borda do Pantanal Matogrossense. A composição isotópica das águas subterrâneas do SAG foi utilizada para auxiliar na compreensão das condições paleoclimáticas nas zonas de recarga regionais. As razões isotópicas δ18O e δ2H nas águas subterrâneas do SAG variam respectivamente de –9.1 até –4.8‰ V-SMOW e –58.4 até –21.7‰ V-SMOW. Nas áreas de recarga são observadas águas com valores enriquecidos em δ18O, enquanto na porção onde o aquífero encontra-se confinado águas empobrecidas em δ18O são observadas. Esse fato sugere que as condições climáticas, na época da recarga destas águas, eram cerca de 10°C mais baixas que as atuais. Na área de estudo as razões de δ13C nas águas subterrâneas do SAG variam de –19.5‰ até –6.5‰ VPDB, aumentando de maneira concordante ao fluxo regional, em direção a zona confinada. Essa variação está relacionada à dissolução do cimento carbonático presente nos arenitos.

References

  1. Amundson RG, Chadwick OA, Sowers JM, Doner HE (1988) Relationship between climate and vegetation and stable carbon isotope chemistry of soils in the eastern Mojave Desert, Nevada. Quatern Res 29:245–254CrossRefGoogle Scholar
  2. Araújo LM, França AB, Poter PE (1995) Aquífero Gigante do Mercosul no Brasil, Argentina, Uruguai e Paraguai; Mapas Hidrogeológicos das Formações Botucatu, Pirambóia, Rosário do Sul, Buena Vista, Missiones e Tacaurémbo [Mercosul Giant Aquifer on Brazil, Argentine, Uruguay and Paraguay; Hydrogeological maps of Botucatu, Pirambóia, Rosário do Sul, Buena Vista, Missiones and Tacuarembo formations]. Maps, 4 maps, scale 1:5,000,000, UFPR-Petrobras, Curitiba, Brazil, 16 ppGoogle Scholar
  3. Araújo LM, França AB, Potter PE (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná basins, South America, and comparison with the Navajo-Nugget Aquifer System, USA. Hydrogeol J 7:317–336CrossRefGoogle Scholar
  4. Behling H, Lichte M (1997) Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quatern Res 48:348–358CrossRefGoogle Scholar
  5. Bonotto D (2005) Hydro(radio)chemical relationships in the giant Guarani Aquifer, Brazil. J Hydrol 323:353–386CrossRefGoogle Scholar
  6. Caetano-Chang MR (1997) A Formação Pirambóia no Centro-leste do Estado de São Paulo (Pirambóia Formation in the Center-East portion of São Paulo State). Habilitation Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Brazil, 196 ppGoogle Scholar
  7. Caetano-Chang MR, Wu FT (2003) Diagênese de Arenitos da Formação Pirambóia no Centro Leste Paulista [Diagenesis of Pirambóia Formation Sandstones in the center-east portion of São Paulo State]. Geociências (special issue) 22:33–39Google Scholar
  8. Caetano-Chang MR, Wu FT (2006) Arenitos fluvio-eólicos da porção superior da Formação Pirambóia no centro-leste paulista [Fluvial-aeolian sandstones in the upper portion of Pirambóia Formation in the center-east portion of São Paulo State]. Revista Brasileira de Geociências 36:296–304Google Scholar
  9. Clark ID, Aravena R (2005) Environmental isotopes in ground water resource and contaminant hydrogeology. NGWA COURSE no. 394, 25–26 January, NGWA, San Diego, 103 ppGoogle Scholar
  10. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 325 ppGoogle Scholar
  11. Coleman ML, Shepard TJ, Durhan JJ, Rouse JD, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  12. Cresswell RG, Bonotto D (2008) Some possible evolutionary scenarios suggested by 36Cl measurements in Guarani Aquifer groundwaters. Appl Radiat Isot 66(8):1160–1174CrossRefGoogle Scholar
  13. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468CrossRefGoogle Scholar
  14. Darling WG, Bath AH, Talbot JC (2003) The O & H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrol Earth Syst Sci 7(2):183–195CrossRefGoogle Scholar
  15. Epstein S, Mayeda TK (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  16. França AB, Araújo LM, Maynard JB, Potter PE (2003) Secondary porosity formed by deep meteoric leaching: Botucatu Eolanite, southern South America. AAPG Bull 87(7):1073–1082CrossRefGoogle Scholar
  17. Fritz P, Fontes JC (eds) (1980a) Handbook of environmental isotope geochemistry, vol 1: the terrestrial environment. Elsevier, Amsterdam, 545 ppGoogle Scholar
  18. Fritz P, Fontes JC (1980b) Handbook of environmental isotope geochemistry, vol 2; the terrestrial environment. Elsevier, Amsterdam, 557 ppGoogle Scholar
  19. Fritz P, Frape SK (1982) Saline groundwaters in Canadian shield: a first overview. Chem Geol 36:179–190CrossRefGoogle Scholar
  20. Fúlfaro VJ, Perinotto JAJ (1994) Geomorfologia do Estado de Mato Grosso do Sul e o Arcabouço Estrutural [Geomorphlogy of Mato Grosso do Sul State and the Structural Framework]. In: Proc. Cong. Brasileiro Geologia, 38, vol 3, pp 197–198Google Scholar
  21. Gallo G, Sinelli O (1980) Estudo Isotópico das Águas Subterrâneas na Região de Ribeirão Preto [Groundwater isotopic studies in the region of Ribeirão Preto]. Revista Brasileira de Geociências 10:130–139Google Scholar
  22. Gastmans D (2007) Hidrogeologia e Hidroquímica do Sistema Aqüífero Guarani na Porção Ocidental da Bacia Sedimentar do Paraná [Hydrogeology and hydrochemistry of Guarani Aquifer System in the occidental portion of the Paraná Sedimentary Basin]. PhD Thesis, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Brazil, 193 ppGoogle Scholar
  23. Gastmans D, Chang HK (2005) Avaliação da Hidrogeologia e Hidroquímica do Sistema Aqüífero Guarani (SAG) no Estado de Mato Grosso do Sul [Guarani Aquifer System (GAS) Hydrogeology and hydrochemistry evaluation in Mato Grosso do Sul State]. Revista Águas Subterrâneas 19(1):35–48Google Scholar
  24. Gastmans D, Chang HK, Hutcheon I (2010) Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Appl Geochem 25(1):15–36. doi:10.1016/j.apgeochem.2009.09.024 CrossRefGoogle Scholar
  25. Gat JR (1971) Comments on the stable isotopes method in regional groundwater investigation. Water Resour Res 7:980–993CrossRefGoogle Scholar
  26. Hoefs J (1997) Stable isotopes geochemistry. Springer, Berlin, 201 ppGoogle Scholar
  27. IAEA/WMO (2006) Global Network of Isotopes in Precipitation: the GNIP database. IAEA/WMO, Vienna. http://isohis.iaea.org. Cited 22 April 2008
  28. Kimmelmann e Silva AA, Rebouças AC, Santiago MMF, Silva RBG (1982) Isotopic study of the Botucatu Aquífer System in the Brazilian portion of the Parana Basin. In: Isotope hydrology investigations in Latin America, IAEE TECDOC-502, IAEE, Dallas, TX, pp 51–71Google Scholar
  29. Kimmelmann e Silva AA, Silva RBG, Rebouças AC, Santiago MMF (1986) Hidrologia isotópica do Aqüífero Botucatu, Bacia do Paraná, Brasil [Botucatu Aquifer isotopic hydrology, Paraná Basin, Brazil]. In: Proc. Cong. Brasileiro de Hidrogeologia, August 1986, São Paulo, Brazil, pp 1–25Google Scholar
  30. Kimmelmann e Silva AA, Rebouças AC, Santiago MMF (1989) 14C analyses of groundwater from Botucatu Aquifer System in Brazil. Radiocarbon 31(3):926–933Google Scholar
  31. Koerner RM (1989) Ice core evidence for extensive melting of the Greenland ice sheet in the last interglacial. Science 244:964–968CrossRefGoogle Scholar
  32. Kumar US, Sharma S, Navada SV, Deodhar AS (2009) Environmental isotopes investigation on recharge process and hydrodynamics of the coastal sedimentary aquifers of Tiruvadanai, Tamilnadu State, India. J Hydrol 364:23–39CrossRefGoogle Scholar
  33. Ledru MP (1993) Late Quaternary environmental and climatic changes in central Brazil. Quatern Res 39:90–98CrossRefGoogle Scholar
  34. Ledru MP, Braga PIS, Soubiès F, Fournier M, Martin L, Suguio K, Turcq B (1996) The last 50, 000 years in the neotropics (southern Brazil): evolution of vegetation and climate. Palaeogeogr Palaeoclimatol Palaeoecol 123:239–257CrossRefGoogle Scholar
  35. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu Aquifer in São Paulo State, Brazil. J Hydrol 250:78–87CrossRefGoogle Scholar
  36. Mook WG (ed) (2002) Isótopos ambientales en el ciclo hidrológico: principios e aplicaciones [Environmental isotopes in the water cycle: principles and applications]. Série: Guias y Manuales no. 1. Instituto Geológico y Minero de España, Madrid, 596 ppGoogle Scholar
  37. OEA (2009) Aquífero Guarani: programa estratégico de ações [Guarani Aquifer: strategic program of actions]. OEA, Washington, DC, 424 ppGoogle Scholar
  38. Paternoster M, Liotta M, Favara R (2005) Stable isotopes ratios in meteoric recharge and groundwater at Mt. Vulture Volcano, southern Italy. J Hydrol 348:87–97CrossRefGoogle Scholar
  39. Rademacher LK, Clark JF, Hudson GB (2002) Temporal changes in stable isotope composition of spring waters: implications for recent changes in climate and atmospheric circulation. Geology 30(2):139–142CrossRefGoogle Scholar
  40. Rozanski K, Araguás-Araguás L, Gonfitiantini R (1993) Isotopic patterns in modern global precipitation. American Geophysical Union Monograph 78, AGU, Washington, DCGoogle Scholar
  41. SANESUL/TAHAL (1998) Estudos Hidrogeológicos de Mato Grosso do Sul [Hydrogeological Studies of Mato Grosso do Sul]. Final report, Campo Grande, maps vols I–II, SANESUL/TAHAL, Tel Aviv, Israel, 736 ppGoogle Scholar
  42. Scherer CMS (2000) Eolian Dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: morphology and origin. Sed Geol 137:63–84CrossRefGoogle Scholar
  43. SEPLAN/CRN (1990) Atlas Multireferrencial do Estado de Mato Grosso do Sul [Mato Grosso do Sul state Multireferential Atlas]. Secretaria de Planejamento e Coordenação Geral, Coordenadoria de Recursos Naturais, Campo Grande, BrazilGoogle Scholar
  44. Silva RBG da (1983) Estudo Hidroquímico e Isotópico do Aquífero Botucatu no Estado de São Paulo [Hydrochemical and isotopic studies of Botucatu Aquifer in São Paulo State). PhD Thesis, Instituto de Geociências, Universidade de São Paulo, Brazil, 133 ppGoogle Scholar
  45. Soares PC (1973) O Mesozóico Gondwânico no Estado de São Paulo (Gondwanic Mesozoic in São Paulo State). PhD Thesis, Fac. Ciências e Letras de Rio Claro, Brazil, 153 ppGoogle Scholar
  46. Soares PC (1975) Divisão Estratigráfica do Mesozóico no Estado de São Paulo (Mesozoic Stratigraphic Division in São Paulo State). Revista Brasileira de Geociências 5:229–251Google Scholar
  47. Sracek O, Hirata R (2002) Geochemical and stable isotopic evolution of the Guarani Aquifer System in the State of São Paulo, Brazil. Hydrogeol J 10:643–655CrossRefGoogle Scholar
  48. Stevaux JC (2000) Climatic events during the late Pleistocene and Holocene in the upper Parana River: correlation with the NE Argentina and south-central Brazil. Quatern Int 72:73–85CrossRefGoogle Scholar
  49. Stute M, Forster M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broecker WS, Bonani G (1995) Cooling of tropical Brazil (5°C) during the Last Glacial Maximum. Science 269:379–383CrossRefGoogle Scholar
  50. Wigley TML, Plummer LN, Pearson FJ Jr (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139CrossRefGoogle Scholar
  51. Yurtsever Y, Gat JR (1981) Atmospheric Waters. In: Gat JR, Gonfiantini R (eds) Stable isotope hydrology, deuterium and oxygen-18 in the water cycle, Chap. 6, IAEA technical report series no. 210, IAEA, Vienna, pp 103–142Google Scholar
  52. Zhu GF, Li ZZ, Su YH, Ma JZ, Zhang YY (2007) Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minquin Basin, Northwest China. J Hydrol 333:239–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Didier Gastmans
    • 1
  • Hung Kiang Chang
    • 1
  • Ian Hutcheon
    • 2
  1. 1.Departamento de Geologia Aplicada, UNESPLaboratório de Estudos de Bacias, LEBACRio ClaroBrazil
  2. 2.Applied Geochemistry Group, Department of GeosciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations