Skip to main content

Advertisement

Log in

Review: Thermal water resources in carbonate rock aquifers

Aperçu: les ressources en eau thermale des aquifères carbonatés

Review: Thermalwasserressourcen in Karbonatgesteins-Grundwasserleitern

Revisión: Recursos de aguas termales en acuíferos de rocas carbonáticas

Review: Karbonátos víztartók termálvízkészletei

Revisão da literatura: Recursos de águas termais em aquíferos carbonatados

综述: 碳酸盐岩含水层中的热水资源

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The current knowledge on thermal water resources in carbonate rock aquifers is presented in this review, which also discusses geochemical processes that create reservoir porosity and different types of utilisations of these resources such as thermal baths, geothermal energy and carbon dioxide (CO2) sequestration. Carbonate aquifers probably constitute the most important thermal water resources outside of volcanic areas. Several processes contribute to the creation of porosity, summarised under the term hypogenic (or hypogene) speleogenesis, including retrograde calcite solubility, mixing corrosion induced by cross-formational flow, and dissolution by geogenic acids from deep sources. Thermal and mineral waters from karst aquifers supply spas all over the world such as the famous bath in Budapest, Hungary. Geothermal installations use these resources for electricity production, district heating or other purposes, with low CO2 emissions and land consumption, e.g. Germany’s largest geothermal power plant at Unterhaching near Munich. Regional fault and fracture zones are often the most productive zones, but are sometimes difficult to locate, resulting in a relatively high exploration uncertainty. Geothermal installations in deep carbonate rocks could also be used for CO2 sequestration (carbonate dissolution would partly neutralise this gas and increase reservoir porosity). The use of geothermal installations to this end should be further investigated.

Résumé

Cet aperçu présente les connaissances actuelles sur les ressources en eau thermale des aquifères carbonatés, expose les processus géochimiques créant la porosité des réservoirs ainsi que les diverses modes d’utilisation de ces ressources, tels établissements thermaux, énergie géothermique, séquestration du CO2. Les aquifères carbonatés constituent probablement les réservoirs d’eau thermale les plus importantes hors zones volcaniques. Plusieurs processus regroupés sous le terme spéléogénèse contribuent à la formation de la porosité: remobilisation de la calcite, corrosion induite par flux de drainance, dissolution par acides terrigènes d’origine profonde. Des eaux thermales et minérales karstiques alimentent des stations thermales dans le monde entier, tels les fameux bains de Budapest, Hongrie. Des installations géothermiques utilisent ces ressources pour la production d’électricité, le chauffage urbain et autres usages, avec faibles émissions de CO2 et occupation du sol restreinte, e.g. la plus grande installation géothermique d’Allemagne, à Unterhaching près Munich. Faille régionale et champs de fractures sont souvent les zones les plus productives, mais quelques fois difficiles à localiser en raison de l’incertitude relativement forte de la recherche. Des dispositifs géothermiques sur roches carbonatées profondes pourraient aussi être utilisés pour la séquestration du CO2 (le gaz dissolvant le carbonate et augmentant de ce fait la porosité du réservoir). L’utilisation de dispositifs géothermiques à cette fin devrait être d’avantage explorée.

Zusammenfassung

Das aktuelle Wissen über Thermalwasserressourcen in Karbonatgesteins-Grundwasserleitern wird in diesem Review präsentiert. Es werden geochemische Prozesse diskutiert, die Reservoir-Porosität generieren, sowie verschiedene Nutzungsformen dieser Ressourcen vorstellt—Thermalbäder, geothermische Energie und Sequestrierung von Kohlendioxid (CO2). Karbonatgesteins-Grundwasserleiter sind vermutlich die wichtigsten Thermalwasserressourcen außerhalb vulkanischer Gebiete. Verschiedene Prozesse tragen zur Schaffung von Porosität bei, zusammengefasst unter dem Begriff hypogene Speläogenese, so wie retrograde Calcit-Lösung, Mischungskorrosion (induziert durch formationsübergreifende Strömung) und Lösung durch geogene Säuren aus tiefen Quellen. Thermal- und Mineralwässer aus Karstgrundwasserleitern speisen überall auf der Welt Bäder, beispielsweise in Budapest in Ungarn. Geothermische Installationen nutzen diese Ressourcen zur Produktion elektrischer Energie, für Fernwärme und für andere Zwecke. Dabei sind sowohl die CO2-Emissionen als auch der Flächenverbrauch sehr gering. Deutschlands größtes Geothermie-Kraftwerk in Unterhaching bei München ist hierfür ein Beispiel. Regionale Störungs- und Kluftzonen sind oft am produktivsten aber manchmal nur schwer zu lokalisieren, was zu einem recht hohen Fündigkeitsrisiko führt. Geothermische Installationen in tiefen Karbonatgesteinen könnten auch zur Sequestrierung von CO2 verwendet werden (Carbonatlösung würde das Gas neutralisieren und gleichzeitig die Reservoir-Porosität erhöhen). Diese Anwendungsmöglichkeit sollte weiter untersucht werden.

Resumen

En esta revisión se presenta el conocimiento actual sobre los recursos de aguas termales en los acuíferos de rocas carbonáticas y se discuten también los procesos geoquímicos que crean la porosidad de los reservorios y los diferentes usos de estos recursos, tales como baños termales, energía geotermal y secuestro de CO2. Probablemente los acuíferos carbonáticos constituyen los más importantes recursos de aguas termales fuera de las áreas volcánicas. Varios procesos contribuyen a la creación de porosidad, resumidos bajo el término de espeleogénesis hipógenica (o hipógena), incluyendo la solubilidad retrógrada de la calcita, la corrosión de mezcla inducida por el flujo a través de las formaciones, y la disolución de ácidos geogénicos provenientes de fuentes profundas. Las aguas termales y minerales de acuíferos kársticos proveen a los balnearios en todas partes del mundo, tales como los famosos baños en Budapest, Hungría. Las instalaciones geotermales usan de estos recursos para producción de electricidad, calefacción de un área u otros propósitos, con bajas emisiones de CO2 y escasa ocupación del suelo, por ejemplo la mayor planta de energía de Alemania en el Unterhaching cerca de Munich. La falla regional y las zonas de fractura son a menudo las zonas más productivas, pero a veces son difíciles de localizar, lo que resulta en una relativamente alta la incertidumbre de exploración. Las instalaciones geotermales en rocas carbonáticas profundas podrían también ser usadas para secuestro de CO2 (la disolución de los carbonatos neutralizaría este gas y por lo tanto incrementaría la porosidad del reservorio). El uso de instalaciones geotermales para este fin requiere de investigaciones ulteriores.

摘要

本篇综述介绍了当前对碳酸盐岩含水层中的热水资源的认识, 讨论了地层储层孔隙产生的地球化学过程和对热水资源的利用, 如温泉浴室, 地热能, CO2的封存。除火山活动区外, 碳酸盐岩地下水极可能是热水资源最重要的组成部分。产生储层孔隙的过程, 概称为深成洞穴成因, 通常包括方解石的逆向溶解、越流导致的混合溶蚀和深源地质成因的酸类的溶解。世界各国都利用卡斯特地区的地热矿物质水提供温泉疗养, 如匈牙利著名的布达佩斯温泉。利用这些资源发电、区域供暖或作为其它用途的地热设施占地少、CO2 排放量少, 如位于慕尼黑附近安达赫治的德国最大的地热发电厂。区域断层和裂隙带通常是最佳地热能区域, 但是有时很难进行定位, 导致勘探过程中较高的不确定性。基于深层碳酸盐岩的地热设施也能用于CO2的封存 (碳酸盐的溶解会中和CO2气体, 进而增大储层孔隙度) 。地热设施在这方面的利用有待进一步研究。

Összefoglalás

Az összefoglaló cikk célja a karbonátos kőzetek termálvízkészleteivel kapcsolatos ismeretek szintézise. A tanulmány a karbonátos rezervoárt létrehozó geokémiai folyamatok ismertetése mellett kitér e víztartók gyógyfürdők, geotermikus energiatermelés és szén-dioxid elhelyezés céljából történő hasznosítási módjaira is. A vulkanikus területektől eltekintve a karbonátos víztartók képezik a legfontosabb termálvízkészleteket a világon. Számos folyamat felelős a karbonátos rezervoárok porozitásának kialakításáért: a kalcit retrográd oldódása, a keveredési korrózió vagy a mélységi savak oldó hatása; mely folyamatok a hipogén barlangképződés gyűjtőfogalom alatt foglalhatók össze. Karsztos víztartóból származó ásvány- és gyógyvizek számos gyógyfürdőt táplálnak világszerte, köztük a híres budapesti gyógyfürdőket. Geotermikus létesítmények elektromos áram termelésre, fűtésre és számos egyéb célra használják ezeket a készleteket alacsony szén-dioxid kibocsátás és kis területigény mellett. Ezek között említhető Németország legnagyobb geotermikus erőműve München mellett, Unterhaching-ban. A regionális szerkezeti zónák, törések gyakran a legkedvezőbbek a karbonátos rezervoárok termelése szempontjából, de helyük megállapítása többnyire nehézséget jelent és ebből adódóan relatíve nagy bizonytalansággal terhelt. Mély helyzetű karbonátos víztartók geotermikus létesítményei a szén-dioxid elhelyezés szempontjából is fontosak lehetnek, hiszen az elhelyezett gáz a karbonátoldás során felhasználódik, ami egyúttal kedvezően növeli a rezervoár porozitását. E lehetőség gyakorlati alkalmazása azonban még további vizsgálatokat igényel.

Resumo

A presente revisão da literatura apresenta uma síntese do conhecimento actual sobre os recursos de águas termais em aquíferos carbonatados, incluindo ainda uma discussão sobre os principais processos geoquímicos que contribuem para criar a porosidade neste tipo de reservatórios e um resumo dos diferentes tipos de utilização destes recursos, nomeadamente os banhos termais, a energia geotérmica e o sequestro de CO2. Os aquíferos carbonatados constituem provavelmente a segunda origem mais importante de recursos de águas termais fora das regiões vulcânicas. Diversos processos, como a solubilização retrógrada da calcite, a corrosão resultante da mistura de fluxos de formação e a dissolução por ácidos geogénicos de origens profundas, contribuem para a criação da porosidade cársica, também designada na literatura como espeleogénese hipogénica. As águas termais e minerais de aquíferos cársicos abastecem estabelecimentos termais em todo o mundo, tais como os famosos banhos em Budapeste, Hungria. As instalações geotérmicas usam estes recursos para a produção de energia, aquecimento de determinadas regiões, ou para outras funções específicas, beneficiando das reduzidas taxas de emissões de CO2 e do escasso uso de solo, sendo um bom exemplo a maior central alemã de energia geotérmica, em Unterhaching, perto de Munique. As zonas de falhas e fracturas regionais são algumas das áreas mais produtivas, mas são muitas vezes difíceis de localizar, resultando numa incerteza relativamente elevada na sua exploração. As instalações geotermais em rochas carbonatadas profundas podem também ser usadas para o sequestro de CO2 (a dissolução de carbonatos neutralizaria este gás e, por isso, contribuiria para aumentar a porosidade do reservatório). A utilização de instalações geotérmicas com este objectivo deve ser por isso alvo de mais investigações.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alföldi L (1982) A layered thermal-water twin flow system. J Hydrol 56:99–105

    Article  Google Scholar 

  • Allen DM, Grasby SE, Voormeij DA (2006) Determining the circulation depth of thermal springs in the southern Rocky Mountain Trench, south-eastern British Columbia, Canada using geothermometry and borehole temperature logs. Hydrogeol J 14(1–2):159–172

    Article  Google Scholar 

  • Altunel E, Hancock PL (1993) Morphology and structural setting of Quaternary travertines at Pamukkale, Turkey. Geol J 28(3–4):335–346

    Article  Google Scholar 

  • Andre BJ, Rajaram H (2005) Dissolution of limestone fractures by cooling waters: early development of hypogene karst systems. Water Resour Res 41:W01015

    Article  Google Scholar 

  • Aquilina L, De Dreuzy JR, Bour O, Davy P (2004) Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forêts geothermal site. Geochim Cosmochim Acta 68(11):2405–2415

    Article  Google Scholar 

  • Audra P, Bini A, Gabrovsek F, Hauselmann P, Hoblea F, Jeannin PY, Kunaver J, Monbaron M, Sustersic F, Tognini P, Trimmel H, Wildberger A (2007) Cave and karst evolution in the Alps and their relation to paleoclimate and paleotopography. Acta Carsol 36:53–67

    Google Scholar 

  • Bachu S (2002) Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Convers Manage 43:87–102

    Article  Google Scholar 

  • Bajjali W, Clark ID, Fritz P (1997) The artesian thermal groundwaters of northern Jordan: insights into their recharge history and age. J Hydrol 192(1–4):355–382

    Article  Google Scholar 

  • Bakalowicz MJ, Ford DC, Miller TE, Palmer AN, Palmer MV (1987) Thermal genesis of dissolution caves in the Black Hills, South Dakota. Geol Soc Am Bull 99:729–738

    Article  Google Scholar 

  • Báldi T (1983) Magyarországi oligocén és alsómiocén formációk [Oligocene and Lower Miocene Formations in Hungary] Akadémiai Kiadó, Budapest, 293 pp

  • Bayari S, Ozyurt N, Pekkans E (2009) Giant collapse structures formed by hypogenic karstification: the Obruks of the Central Anatolia, Turkey. In: Klimchouk A, Ford D (eds) Hypogene speleogenesis and karst hydrogeology of artesian basins. Special Paper 1, Ukrainian Institute of Speleology and Karstology, Simferopol, Ukraine, pp 83–90

  • Bennett PC, Engel AS (2005) Microbial contributions to karstification. In Gadd GM, Semple KT, Lappin-Scott HM (eds) Micro-organisms and Earth Systems. Advances in Geomicrobiology, Society for General Microbiology (SGM) Symposium 65, Cambridge University Press, Cambridge, pp 345–363

  • Berge TB, Veal SL (2005) Structure of the Alpine foreland. Tectonics 24:TC5011

    Article  Google Scholar 

  • Bickle MJ (2009) Geological carbon storage. Nature Geosci 2(12):815–818

    Article  Google Scholar 

  • Bischoff JL, Julia R, Shanks WC, Rosenbauer RJ (1994) Karstification without carbonic acid; bedrock dissolution by gypsum-driven dedolomitization. Geology 22:995–998

    Article  Google Scholar 

  • Bissig P, Goldscheider N, Mayoraz J, Surbeck H, Vuataz FD (2006) Carbogaseous spring waters, coldwater geysers and dry CO2 exhalations in the tectonic window of the Lower Engadine Valley, Switzerland. Eclogae Geol Helv 99:143–155

    Article  Google Scholar 

  • Bjorlykke K (1993) Fluid-flow in sedimentary basins. Sed Geol 86(1–2):137–158

    Article  Google Scholar 

  • Bögli A (1964) Mischungskorrosion: ein Beitrag zum Verkarstungsproblem [Mixing corrosion: a contribution to understand karst phemomena]. Erdkunde 18:83–92

    Article  Google Scholar 

  • Boissavy C, Hauber L (1994) Results of the geothermal boreholes Riehen 1 and Riehen 2 (Basel, Switzerland). Doc. Int. Symp. Geothermics 94 in Europe, Doc. BRGM 230, BRGM, Orléans, pp 453–460

  • Bosak P, Ford D, Glazek J, Horacek I (eds) (1989) Paleokarst: a systematic and regional review. Elsevier, New York, 725 pp

  • Boston PJ, Spilde MN, Northup DE, Curry MD, Melim LA, Rosales-Lagarde L (2009) Microorganisms as speleogenetic agents: geochemical diversity but geomicrobial unity. In: Klimchouk A, Ford D (eds) Hypogene speleogenesis and karst hydrogeology of artesian basins. Special Paper 1, Ukrainian Institute of Speleology and Karstology, Simferopol, Ukraine, pp 51–58

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Brassington FC (2007) A proposed conceptual model for the genesis of the Derbyshire thermal springs. Q J Eng Geol Hydrogeol 40:35–46

    Article  Google Scholar 

  • Bretz JH (1949) Carlsbad Caverns and other caves of the Guadalupe block, New Mexico. J Geol 57:447–463

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028

    Article  Google Scholar 

  • Casanova J, Bodénan F, Négrel Ph, Azaroual M (1999) Microbial control on the precipitation of modern ferrihydrite and carbonate deposits from the Cézallier hydrothermal springs (Massif Central, France). Sed Geol 126:125–145

    Article  Google Scholar 

  • Christopher NSJ, Beck JS, Mellors PT (1977) Hydrology: water in limestone. In: Ford TD (ed) Limestone and caves of the Peak District. Geo Abstracts, Norwich, pp 185–230

  • Deák J (1978) Environmental isotopes and water chemical studies for groundwater research in Hungary. Isotope Hydrology, IAEA-SM-228/13, IAEA, Vienna, pp 221–249

  • Deming D (2002) Introduction to hydrogeology. McGraw-Hill, New York, 468 pp

    Google Scholar 

  • Dickson MH, Fanelli M (eds) (2003) Geothermal energy, utilization and technology. UNESCO, New York, 205 pp

  • Dilsiz C (2006) Conceptual hydrodynamic model of the Pamukkale hydrothermal field, southwestern Turkey, based on hydrochemical and isotopic data. Hydrogeol J 14(4):562–572

    Article  Google Scholar 

  • DiPippo R (2008) Geothermal power plants: principles, applications, case studies and environmental impacts, 2nd edn. Elsevier, Amsterdam, 493 pp

  • Djidi K, Bakalowicz M, Benali AM (2008) Mixed, classical and hydrothermal karstification in a carbonate aquifer: hydrogeological consequences—the case of the Saida aquifer system, Algeria. C R Geosci 340(7):462–473

    Article  Google Scholar 

  • Dreybrodt W (1990) The role of dissolution kinetics in the development of karstification in limestone: a model simulation of karst evolution. J Geol 98:639–655

    Article  Google Scholar 

  • Dreybrodt W (2000) Equilibrium chemistry of karst waters in limestone terranes. In: Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers, National Speleological Society, Huntsville, AL, pp 126–135

  • Drogue C (1985) Geothermal gradients and groundwater circulation in fissured and karstic rocks: the role played by the structure of the permeable network. J Geodyn 4(1–4):219–231

    Article  Google Scholar 

  • Dublyansky YV (1995) Speleogenetic history of the Hungarian hydrothermal karst. Environ Geol 25:24–35

    Article  Google Scholar 

  • Dublyansky YV (2000) Hydrothermal speleogenesis: its settings and peculiar features. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis evolution of karst aquifers. National Speleological Society, Huntsville, Alabama, pp 298–303

    Google Scholar 

  • Economides M, Ungemach P (1987) Applied geothermics. Wiley, Chichester, UK, 238 pp

  • Edmunds WM (1971) Hydrogeochemistry of groundwaters in the Derbyeshire Dome with special reference to trace constituents. Inst Geol Sci Rep 71/7, BGS, Keyworth, UK, 52 pp

  • Egemeier SJ (1981) Cavern development by thermal waters. Nat Speleol Soc Bull 43:31–51

    Google Scholar 

  • Erőss A, Csoma ÉA, Mádl-Szőnyi J (2008a) The effects of mixed hydrothermal and meteoric fluids on karst reservoir development, Buda Thermal Karst, Hungary. In: Sasowsky ID, Feazel CT, Mylorie JE, Palmer AN, Palmer MV (eds) Karst from recent to reservoirs, Karst Waters Institute, Spec Publ 14, Leesburg, VA, pp 57–63

    Google Scholar 

  • Erőss A, Mádl-Szőnyi J, Csoma A (2008b) Characteristics of discharge at Rose and Gellért Hills, Budapest, Hungary. Central Euro Geol 51(3):267–281

    Article  Google Scholar 

  • Fischer H, Hauber L, Wittmann O (1971) Erläuterungen zum Blatt 1047 Basel. Geologischer Atlas der Schweiz 1:25000 [Geologic Atlas of Switzerland 1:25000, explanatory note for map sheet 1047 Basel]. Federal Office of Topography, Wabern, Switzerland, pp 1–55

  • Ford DC (1995) Paleokarst as a target for modern karstification. Paleokarst Field Conference on Macroscopic Dissolution Features in the Rock Record, San Salvador Island, Bahamas, February 1995, pp 138–147

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 576 pp

  • Forster C, Smith L (1988a) Groundwater flow systems in mountainous terrain 1: numerical modelling technique. Water Resour Res 24:999–1010

    Article  Google Scholar 

  • Forster C, Smith L (1988b) Groundwater flow systems in mountainous terrain 2: controlling factors. Water Resour Res 24:1011–1023

    Article  Google Scholar 

  • Frumkin A, Gvirtzman H (2006) Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel. J Hydrol 318:316–333

    Article  Google Scholar 

  • Fujisawa A, Tazaki K (2003) The radioactive microbial mats: in case of Misasa hot springs in Tottori Prefecture. In: Kamata N (ed) Proceedings: International Symposium of the Kanazawa University 21st-Century COE Program vol 1. Kanazawa University, Kanazawa, Japan, pp 328–331

    Google Scholar 

  • Gabrovsek F, Dreybrodt W (2000) Role of mixing corrosion in calcite-aggressive H2O–CO2–CaCO3 solutions in the early evolution of karst aquifers in limestone. Water Resour Res 36:1179–1188

    Article  Google Scholar 

  • Gabrovsek F, Menne B, Dreybrodt W (2000) A model of early evolution of karst conduits affected by subterranean CO2 sources. Environ Geol 39(6):531–543

    Article  Google Scholar 

  • Gainon F, Goldscheider N, Surbeck H (2007) Conceptual model for the origin of high radon levels in spring waters: the example of the St. Placidus spring, Grisons, Swiss Alps. Swiss J Geosci 100(2):251–262

    Article  Google Scholar 

  • Gallois R (2007) The formation of the hot springs at Bath Spa, UK. Geol Mag 144:741–747

    Article  Google Scholar 

  • Gary M, Sharp JM (2006) Volcanogenic karstification of Sistema Zacatón, Mexico. Geol Soc Am Spec Pap 404:79–89

    Google Scholar 

  • Gemici U, Filiz S (2001) Hydrochemistry of the Cesme geothermal area in western Turkey. J Volcanol Geoth Res 110:171–187

    Article  Google Scholar 

  • Goldscheider N (2008) A new quantitative interpretation of the long-tail and plateau-like breakthrough curves from tracer tests in the artesian karst aquifer of Stuttgart, Germany. Hydrogeol J 16(7):1311–1317

    Article  Google Scholar 

  • Goldscheider N, Bechtel TD (2009) Editors’ message: the housing crisis from underground—damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17(3):491–493

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. International Contributions to Hydrogeology 26. Taylor & Francis, London, 264 pp

    Google Scholar 

  • Goldscheider N, Hötzl H, Käss W, Ufrecht W (2003) Combined tracer tests in the karst aquifer of the artesian mineral springs of Stuttgart, Germany. Environ Geol 43(8):922–929

    Article  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14(6):926–941

    Article  Google Scholar 

  • Grasby SE, Hutcheon I (2001) Controls on the distribution of thermal springs in the southern Canadian Cordillera. Can J Earth Sci 38:427–440

    Article  Google Scholar 

  • Grasby SE, Hutcheon I, Krouse HR (2000) The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem 15:439–454

    Article  Google Scholar 

  • Gunn J, Bottrell SH, Lowe DJ, Worthington SRH (2006) Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK. Hydrogeol J 14:868–881

    Article  Google Scholar 

  • Gupta H, Roy S (2007) Geothermal Energy, an alternative resource for the 21st Century. Elsevier, Amsterdam, 279 pp

  • Haas J (1988) Upper Triassic carbonate platform evolution in the Transdanubian Mid-Mountains. Acta Geol Hung 31(3–4):299–312

    Google Scholar 

  • Hill CA (1987) Geology of Carlsbad Cavern and other caves in the Guadalupe Mountains, New Mexico and Texas. Bulletin 117, New Mexico Bureau of Mines and Mineral Resources, Sante Fe, NM, 150 pp

  • Hill CA (1990) Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas. AAPG Bull 74(11):1685–1694

    Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169:399–423

    Article  Google Scholar 

  • Inoubli N, Gouasmia M, Gasmi M, Mharndi A, Ben Dhia H (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: the case of the Hmeima region (central-western Tunisia). J Afr Earth Sci 46(3):180–186

    Article  Google Scholar 

  • Käss W, Käss H (2008) Deutsches Bäderbuch, 2. Aufl. [German Spa Book, 2nd edn]. Schweizerbart, Stuttgart, Germany

  • Keller B (1991) Hydrology of the Swiss Molasse Basin: a review of current knowledge and considerations for the future. Eclogae Geol Helv 85(3):611–652

    Google Scholar 

  • Klimchouk AB (2007) Hypogene speleogenesis: hydrogeological and morphogenetic perspective. Special Paper no. 1, National Cave and Karst Research Institute, Carlsbad, NM

    Google Scholar 

  • Klimchouk AB, Ford DC (2000) Types of karst and evolution of hydrogeologic setting. In: Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers. National Speleological Society, Huntsville, AL, pp 45–53

  • Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) (2000) Speleogenesis, evolution of karst aquifers. National Speleological Society, Huntsville, AL, 527 pp

  • Kohl T, Bächler D, Rybach L (2000) Steps towards a comprehensive thermo-hydraulic analysis of the HDR test site Soultz-sous-Forêts. Proc. of the World Geothermal Congress 2000, Tohoku, Japan, 28 May–10 June 2000, pp 2671–2676

  • Langmuir D (1971) The geochemistry of carbonate ground waters in central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045

    Article  Google Scholar 

  • Lauritzen SE, Bottrell S (1994) Microbiological activity in thermoglacial karst springs, south Spitsbergen. Geomicrobiol J 12:161–173

    Article  Google Scholar 

  • Leél-Őssy Sz, Surányi G (2003) Peculiar hydrothermal caves in Budapest, Hungary. Acta Geol Hung 46(4):407–436

    Article  Google Scholar 

  • Levet S, Toutain JP, Munoz M, Berger G, Negrel P, Jendrzejewski N, Agrinier P, Sortino F (2002) Geochemistry of the Bagneres-de-Bigorre thermal waters from the North Pyrenean Zone (France). Geofluids 2(1):25–40

    Article  Google Scholar 

  • Li M, Li GM, Yang L, Dang XY, Zhao CH, Hou GC, Zhang MS (2007) Numerical modeling of geothermal groundwater flow in karst aquifer system in eastern Weibei, Shaanxi Province, China. Sci China Series D: Earth Sci 50:36–41

    Article  Google Scholar 

  • Lopez DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31:1489–1503

    Article  Google Scholar 

  • Lopez DL, Smith L (1996) Fluid flow in fault zones: influence of hydraulic anisotropy and heterogeneity on the fluid flow and heat transfer regime. Water Resour Res 32:3227–3235

    Article  Google Scholar 

  • Ma T, Wang YX, Guo QH, Yan CM, Ma R, Huang Z (2009) Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, northern China. J Earth Sci 20(5):879–889

    Article  Google Scholar 

  • Mazzullo SJ, Harris PM (1991) An overview of dissolution porosity development in the deep-burial environment, with examples from carbonate reservoirs in the Permian Basin. West Texas Geological Society, Midland, TX, pp 91–89, 125–138

    Google Scholar 

  • Mazzullo SJ, Harris PM (1992) Mesogenetic dissolution: its role in porosity development in carbonate reservoirs. AAPG Bull 76(5):607–620

    Google Scholar 

  • Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water Suppl Pap 494, 71 pp

  • Menzel H, Seibt P, Kellner T (2000) Five years of experience in the operation of the Neustadt-Glewe geothermal project. Proc. of the World Geothermal Congress 2000, Tohoku, Japan, 28 May–10 June 2000, pp 2671–2676

  • Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66(1–2):89–141

    Article  Google Scholar 

  • Minissale A, Vaselli O, Tassi F, Magro G, Grechi GP (2002) Fluid mixing in carbonate aquifers near Rapolano (central Italy): chemical and isotopic constraints. Appl Geochem 17:1329–1342

    Article  Google Scholar 

  • Muralt R, Vuataz FD, Schonborn G, Sommaruga A, Jenny J (1997) Integration of hydrochemical, geological and geophysical methods for the exploration of a new thermal water resource: case of Yverdon-les-Bains, foot of the Jura range. Eclogae Geol Helv 90:179–197

    Google Scholar 

  • Müller P (1989) Hydrothermal paleokarst of Hungary. In: Bosák P, Ford DC, Glazek J, Horacek I (eds) Paleokarst: a systematic and regional review. Elsevier and Academia, Amsterdam and Praha, pp 155–163

    Google Scholar 

  • Mylroie JR, Mylroie JE (2007) Development of the carbonate island karst model. J Caves Karst Stud 69:59–75

    Google Scholar 

  • Nagra (National Cooperative for the Disposal of Radioactive Waste) (1990) Sondierbohrung Riniken [Exploration drilling Riniken]. Nagra Technischer Bericht, NTB 88-09, Baden, Germany

  • Nagymarosy A, Báldi T, Horváth M (1986) The Eocene-Oligocene boundary in Hungary. In: Pomerol C et al (eds) Terminal Eocene events. Elsevier, Amsterdam, pp 113–116

    Chapter  Google Scholar 

  • Nádor A (1994) Paleokarstic features in Triassic-Eocene carbonates: multiple unconformities of a 200 million year karst evolution, Buda Mountain, Hungary. Zbl Geol Paläont Teil I 1992(11/12):1317–1329

    Google Scholar 

  • Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21

    Article  Google Scholar 

  • Palmer AN (1995) Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. In: Budd AD, Saller AH, Harris PM (eds) Unconformities and porosity in carbonate strata. AAPG Memoir 63:77–101

  • Palmer AN (2000) Hydrogeologic control of cave patterns. In: Klimchouk A, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis, evolution of karst aquifers, National Speleological Society, Huntsville, AL, pp 77–90

  • Palmer AN (2007) Cave geology. Cave Books, Dayton, OH, 454 pp

  • Papp F (1940) Budapest gyógyvizei [Mineral waters of Budapest]. Hidrol Közlöny 20:68–80

    Google Scholar 

  • Pentecost A, Jones B, Renaut RW (2003) What is a hot spring? Can J Earth Sci 40:1443–1446

    Article  Google Scholar 

  • Paschen H, Oertel D, Grünwald R (2003) Möglichkeiten geothermischer Stromerzeugung in Deutschland [Potential of geothermal electricity generation in Germany]. TAB Report no. 4, 124 pp, TAB, Berlin

  • Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manage 49:1446–1454

    Article  Google Scholar 

  • Plummer LN, Back W (1980) The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. Am J Sci 280:130–142

    Article  Google Scholar 

  • Plummer LN, Wigley TML (1976) Dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure. Geochim Cosmochim Acta 40(2):191–202

    Article  Google Scholar 

  • Plummer LN, Wigley TML, Parkhurst DL (1978) Kinetics of calcite dissolution in CO2-water systems at 5°C to 60°C and 0.0 to 1.0 atm CO2. Am J Sci 278(2):179–216

    Article  Google Scholar 

  • Rau GH, Knauss KG, Langer WH, Caldeira K (2007) Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32:1471–1477

    Article  Google Scholar 

  • Rauch HW, White WB (1977) Dissolution kinetics of carbonate rocks. 1. Effects of lithology on dissolution rate. Water Resour Res 13:381–394

    Article  Google Scholar 

  • Rosenbauer RJ, Koksalan T, Palandri JL (2004) Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: implications for CO2 sequestration in deep-saline aquifers. Symposium on Carbon Dioxide Capture and Sequestration held at the 227th National Meeting of the American-Chemical-Society, Anaheim, CA, 27 March–1 April 2004, pp 1581–1597

  • Sass I (2007) Geothermie und Grundwasser [Geothermics and groundwater]. Grundwasser 12(2):93

    Article  Google Scholar 

  • Smosna R, Bruner KR, Riley RA (2005) Paleokarst and reservoir porosity in the Ordovician Beekmantown Dolomite of the central Appalachian basin. Carbonates Evaporites 20:50–63

    Article  Google Scholar 

  • Stober I, Jodocy M (2009) Characteristics of geothermal reservoirs in the Upper Rhine Graben of Baden-Württemberg and France. Grundwasser 14:127–137

    Article  Google Scholar 

  • Takács-Bolner K, Kraus S (1989) The results of research into caves of thermal water origin. Karszt és Barlang Special Issue 31–38, Hungarian Speleological Society, Budapest

  • Tóth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67(11):4375–4387

    Article  Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Tóth J (1971) Groundwater discharge: a common generator of diverse geologic and morphologic phenomena. IASH Bull 16(1–3):7–24

    Google Scholar 

  • Tóth J (1995) Hydraulic continuity in large sedimentary basins. Hydrogeol J 3(4):4–16

    Article  Google Scholar 

  • Tóth J (2009) Springs seen and interpreted in the context of groundwater flow-systems. GSA Annual Meeting, Portland, OR, 18–21 October 2009

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • Ufrecht (2006a) Hydrogeologie des Stuttgarter Mineralwassersystems [Hydrogeology of the mineral water system of Stuttgart]. Schrift Amters Umweltschutz 2006 (3):1–151

  • Ufrecht W (2006b) Zusammensetzung und Herkunft der Gase in den Säuerlingen von Stuttgart-Bad Canstatt und -Berg [Origin and composition of the gas in the carbogaseous springs of Stuttgart Bad Canstatt and Berg]. Schriftenreihe des Amters für Umweltschutz 2006(3):103–114

    Google Scholar 

  • Underschultz JR, Otto CJ, Bartlett R (2005) Formation fluids in faulted aquifers: examples from the foothills of Western Canada and the North West Shelf of Australia. In: Boult P, Kaldi J (eds) Evaluating fault and cap rock seals. AAPG Hedberg Series no. 2, AAPG, Tulsa, OK, pp 247–260

  • Ungemach P, Antics M, Papachristou M (2005) Sustainable geothermal reservoir management. Paper 0517, World Geothermal Congress, Antalya, Turkey, 15–19 April 2005

  • Van Everdingen RO (1991) Physical, chemical, and distributional aspects of Canadian springs. Mem Entomol Soc Can (155):7–28

  • Vathaire J, Boissavy C, Gérard A (2006) Géothermie: aquifères et eaux souterraines en France [Geothermics: aquifers and groundwater in France]. BRGM, Orleans, France

  • White DE (1957) Thermal waters of volcanic origin. Bull Geol Soc Am 68:1637–1658

    Article  Google Scholar 

  • Wolfgramm M, Bartels J, Hoffmann F, Kittl G, Lenz G, Seibt P, Schulz R, Thomas R, Unger HJ (2007) Unterhaching geothermal well doublet: structural and hydrodynamic reservoir characteristic; Bavaria (Germany). European Geothermal Congress 2007, Unterhaching, Germany, 30 May–1 June 2007

    Google Scholar 

  • Worthington SRH (2001) Depth of conduit flow in unconfined carbonate aquifers. Geology 29:335–338

    Article  Google Scholar 

  • Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environ Geol 25:9–15

    Article  Google Scholar 

  • Yoshimura K, Nakao S, Noto M, Inokura Y, Urata K, Chen M, Lin PW (2001) Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan: chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chem Geol 177:415–430

    Article  Google Scholar 

  • Zhou HY, Zhou X, Chai R, Yu L, Liu CH, Li LP (2008) Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China. Environ Geol 53(7):1483–1489

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Associate Editor Jerry Fairley (University of Idaho, USA), and the three reviewers Arthur N. Palmer (State University of New York, USA), Alexander Klimchouk (Institute of Speleology and Karstology and Tavrichesky National University, Ukraine) and an anonymous colleague for constructive and helpful comments and suggestions. Thanks also to Bernhard Huber (HydroConsult, Augsburg, Germany) for advice and information concerning geothermal installations in Bavaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Goldscheider.

Additional information

This article belongs to the series “Reviews in Karst Hydrogeology” promoted by the International Association of Hydrogeologists (IAH) Commission on Karst Hydrogeology (www.iah.org/karst) with the goal to collect and evaluate current knowledge in different fields of karst hydrogeology and make it available to the scientific community.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldscheider, N., Mádl-Szőnyi, J., Erőss, A. et al. Review: Thermal water resources in carbonate rock aquifers. Hydrogeol J 18, 1303–1318 (2010). https://doi.org/10.1007/s10040-010-0611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0611-3

Keywords

Navigation