Skip to main content
Log in

Geophysical investigation of a mineral groundwater resource in Turkey

Reconnaissance géophysique d’un gisement d’eau minérale en Turquie

Investigación geofísica de un recurso de agua subterránea mineral en Turquía

Investigação geofísica de um recurso subterrâneo de água mineral na Turquia

Türkiye’deki bir yeraltı maden suyu kaynağının jeofizik etüdü

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The hydrogeological conditions in Uludag (Nilufer River catchment, Bursa, Turkey) were assessed, using time-domain electromagnetic soundings, electrical resistivity and induced polarisation tomography, to detect the most promising zones for new water-well siting, in order to increase the quantity of water for bottling. The hydrogeological model is quite complex: deep mineral and thermal water rises from a main vertical fault which separates two lithological complexes. The highly mineralised (deep) water is naturally mixed with low mineralised water at a shallow depth, 30–40 m; the mixed mineral water is found in some surface springs and shallow wells, while the highly mineralised water is found at depth in some unused deep wells located close to the main fault. All the water points (springs and wells) are located inside a “mineral water belt” on the north side of the Nilufer River. The geophysical survey confirmed the hydrogeological model and highlighted four promising zones for well siting (zones with very low electrical resistivity and high induced polarisation anomalies, corresponding to the main water-bearing faults). One of the geophysical anomalies, the furthest from the exploited sources, was verified by means of a test well; the drilling results have confirmed the water mixing model.

Résumé

Le contexte hydrogéologique de la région d’Uludag (bassin versant de la rivière Nilufer, province de Bursa, Turquie) a été reconnu par sondages électromagnétiques en domaine temporel, tomographies de résistivité électrique et de polarisation provoquée, pour identifier les zones les plus favorables à l’implantation d’un nouveau forage destiné à augmenter le volume d’eau minérale pour embouteillage. Le modèle hydrogéologique est assez complexe: l’eau minérale et thermale d’origine profonde émerge d’une faille verticale principale séparant deux compartiments lithologiques. L’eau fortement minéralisée (profonde) se mélange naturellement à faible profondeur (30–40 m) avec de l’eau faiblement minéralisée; le mélange émerge par des sources et des puits peu profonds, tandis que l’eau fortement minéralisée se rencontre en profondeur dans des puits non exploités situés près de la faille principale. Tous les points d’eau (sources et puits) se trouvent à l’intérieur d’une « ceinture d’eau minérale » du côté Nord de la rivière Nilufer. La prospection géophysique a confirmé le modèle hydrogéologique et mis a en évidence quatre zones prometteuses pour le forage de puits (très faible résistivité électrique et fortes anomalies polarisation provoquée correspondant aux principales failles productrices). L’une des anomalies géophysiques, la plus éloignée des sources exploitées, a été contrôlée par un forage de reconnaissance dont les résultats ont confirmé le modèle avec mélange des eaux.

Resumen

Se evaluaron las condiciones hidrogeológicas en Uludag (Cuenca del Río Nilufer, Bursa, Turquía), usando sondeos electromagnéticos temporales, resistividad eléctrica y tomografía de polarización inducida, para detectar las zonas más promisorias para el emplazamiento de nuevos pozos de agua, para incrementar la cantidad de agua para embotellamiento. El modelo hidrogeológico es muy complejo: las aguas minerales y termales profundas se elevan a partir de una falla vertical principal que separa dos complejos litológicos. El agua altamente mineralizada (profunda) se mezcla naturalmente con agua de baja mineralización en una profundidad somera, 30–40 m; el agua mineral mezclada se encuentra en algunos manantiales superficiales y pozos someros, mientras que el agua altamente mineralizada se encuentra a profundidad en algunos pozos profundos fuera de servicio localizados en cerca de la falla principal. Todos los puntos de agua (manantiales y pozos) están localizadas dentro de una “cinturón de agua mineral” en el lado norte del Río Nilufer. El relevamiento geofísico confirmó el modelo hidrogeológico y resaltó cuatro zonas promisorias para la ubicación de pozos (zonas con muy baja resistividad eléctrica y altas anomalías de polarización inducida, correspondientes a las principales fallas que transportan el agua). Una de las anomalías geofísicas, la más lejana desde las fuentes explotadas, fue verificada por medio de un ensayo de pozo; los resultados de la perforación han confirmado el modelo de mezcla de agua.

Resumo

As condições hidrogeológicas no Uludag (Bacia Hidrográfica do Rio Nilufer, Bursa, Turquia) foram avaliadas, usando sondagens electromagnéticas no domínio do tempo, resistividade eléctrica e tomografia de polarização induzida, para detectar as zonas mais promissoras para a localização de novos furos de captação de água, com a finalidade de aumentar a quantidade de água para engarrafamento. O modelo hidrogeológico é bastante complexo: água mineral e termal profunda ascende através duma falha principal, vertical, que separa dois complexos litológicos. A água muito mineralizada (profunda) é naturalmente misturada com água pouco mineralizada, a pequena profundidade, 30–40 m; a água mineral misturada é encontrada em algumas nascentes superficiais e em furos pouco profundos, enquanto a água com elevada mineralização é encontrada em profundidade, em alguns furos profundos não utilizados, localizados próximo da falha principal. Todos os pontos de água (nascentes e furos) estão localizados dentro de uma “faixa de água mineral” do lado norte do Rio Nilufer. O levantamento geofísico confirmou o modelo hidrogeológico e destacou quatro zonas promissoras para a localização de furos (zonas com muito baixa resistividade eléctrica e elevadas anomalias de polarização induzida, correspondendo às principais falhas com circulação de água). Uma das anomalias geofísicas, a mais afastada da zona já explorada, foi verificada através de um ensaio de caudal num furo; os resultados da perfuração confirmaram o modelo de mistura da água.

Özet

Şişeleme amaçlı kullanılan mevcut maden suyu miktarını artırmak için bulunacak kuyu yada kuyuların yeraldığı en verimli alanları saptamak için TDEM (Elektromanyetik sondaj zaman alanı), ER (Elektriksel direnç) ve IPT ( Endüklenmiş polarizasyon tomografi) yöntemleri kullanılarak Bursa’da Uludağ’ın güney yamaçlarında yeralan Nilüfer Deresi civarındaki hidrojeolojik koşullar incelenmiştir. Buradaki hidrojeolojik model oldukça karmaşıktır: derindeki mineralli ve termal sular, iki litolojik yapıyı birbirinden ayıran dikey faydan yukarı doğru çıkmaktadır. Mineral içeriği daha yüksek olan sular, 30–40 m gibi sığ derinliklerde daha düşük mineralli sular ile karışmaktadır. Oluşan bu karışım, kendiliğinden yeryüzüne çıkan kaynaklarda ve sığ derinliklerde açılmış kuyularda kendini göstermektedir. Mineral içeriği daha yüksek olan sular ise ana faya yakın yerlerde açılan ama kullanılmayan kuyuların bulunduğu derinliklerdedir. Bütün kaynaklar ve kuyular Nilüfer deresinin kuzeyinde bir maden suyu bandı içersinde yeralmaktadır. Jeofiziksel etüd yukarıda açıklanan hidrojeolejik modeli ve dört adet verimli bölgeyi (düşük rezistivite ve yüksek endüktif polarizasyona sahip su taşıyıcı ana fayı temsil eden bölge) doğrulamaktadır. Mevcut kaynakların en uzağına açılan bir test kuyusu jeofiziksel anomalilerden bir tanesinin doğruluğunu ispat etmektedir. Sondaj sonuçları karışım modelini teyyid etmektedir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdul Nassir SS, Loke MH, Lee CH, Nawawi MNM (2000) Salt-water intrusion mapping by geoelectrical imaging surveys. Geophys Prospect 48:647–661

    Article  Google Scholar 

  • Aral Ü, Okay M, Cemal G, Oùlu NC (2004) The Karakaya Complex: a review of data and concepts. Turkish J Earth Sci 13:77–95

    Google Scholar 

  • Auken E, Christiansen AV (2004) Layered and laterally constrained 2D inversion of resistivity data. Geophysics 69:752–761

    Article  Google Scholar 

  • Bostick FX (1977) A simple almost exact method of MT analysis. Workshop on Electrical Methods in Geothermal Exploration, Snowbird, Utah, 1976, contract no. 14080001-8-359, US Geological Survey, Reston, VA

  • Dahlin T (1996) 2D resistivity surveying for environmental and engineering applications. First Break 14:275–283

    Google Scholar 

  • Dahlin T (2000) Electrode charge-up effects in DC resistivity data acquisition using multielectrode arrays. Geophys Prospect 48:181–187

    Article  Google Scholar 

  • Dahlin T, Leroux V, Nissen J (2002) Measuring techniques in induced polarisation imaging. J Appl Geophys 50:279–298

    Article  Google Scholar 

  • Demanet D, Renardy F, Vanneste K, Jongmans D, Camelbeeck T, Megrahoui M (2001) The use of geophysical prospecting for imaging active faults In the Roer Graben, Belgium. Geophysics 66:78–89

    Article  Google Scholar 

  • Duba A, Piwinskii AJ, Santor M, Weed HC (1978) The electrical conductivity of sandstone, limestone and granite. Geophys J R Astron Soc 53:583–597

    Google Scholar 

  • Fitterman DV (1987) Examples of transient sounding for ground water exploration in sedimentary aquifers. Ground Water 25:685–692

    Article  Google Scholar 

  • Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51:995–1005

    Article  Google Scholar 

  • Fredricksberg DA, Cidarov MP (1962) Study of the relation between induced polarization phenomena and the electrokinetic properties of the capillary system (in Russian). Vestnik of the Leningrad Univ. 4, Geophysics and Chemistry Series

  • Hoekstra P, Blohm-mW (1990) Case histories of time-domain electromagnetic soundings in environmental geophysics. Geotech Environ Geophys 2:1–15

    Google Scholar 

  • Ingeman-Nielsen T, Baumgartner F (2006) CR1Dmod: a MATLAB program to model 1D complex resistivity effects in electrical and electromagnetic survey. Comput Geosci 32:1411–1419

    Article  Google Scholar 

  • Kobranova VN (1986) Petrophysics (in Russian). Nedra, Moscow

    Google Scholar 

  • Llera FJ, Sato M, Nakatsuka K, Yokoyama H (1990) Temperature dependence of the electrical resistivity of water-saturated rocks. Geophysics 55:576–585

    Article  Google Scholar 

  • Loke MH (1998) Rapid 2D resistivity and IP inversion. Geotomo Software, Penang, Malaysia

  • Long JCS, Aydin A, Brown SR, Einstein HH, Hestir K, Hsieh PA, Myer LR, Nolte KG, Norton DL, Olsson OL, Paillet FL, Smith JL, Thomsen L (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC, 551 pp

  • McNeill JD (1990) Use of electromagnetic methods for groundwater studies. Geotech Environ Geophys 1:191–218

    Google Scholar 

  • Meju MA (1998) A simple method of transient electromagnetic data analysis. Geophysics 63:405–410

    Article  Google Scholar 

  • Nekut AG (1987) Direct inversion of time-domain: electromagnetic data. Geophysics 52:1431–1435

    Article  Google Scholar 

  • Nelson HR (1983) New technologies in exploration geophysics. Gulf, Houston, Texas

  • Pagano G, Menghini A, Floris S (2003) Electrical tomography and TDEM prospection in the Chianciano thermal basin (Siena, Italy). Annals Geophys 46:501–512

    Google Scholar 

  • Poulsen LH, Christensen NB (1999) Hydrogeophysical mapping with the transient electromagnetic sounding method. Eur J Environ Eng Geophys 3:201–220

    Google Scholar 

  • Roberts JJ (2001) Electrical properties of microporous rock as a function of saturation and temperature. J Appl Phys 21:1687–1694

    Google Scholar 

  • Sami Soliman M (1970) Induced polarization, a method to study water-collecting properties of rocks. Geophys Prospect 18:654–665

    Article  Google Scholar 

  • Seaton WJ, Burbery TJ (2000) Aquifer characterization in the Blue Ridge physiographic province using resistivity profiling and borehole geophysics: geologic analysis. J Environ Eng Geophys 5:45–58

    Article  Google Scholar 

  • Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67:77–88

    Article  Google Scholar 

  • Smith RS, Edwards RN, Buselli G (1994) An automatic technique for presentation of coincident loop, impulse-response, transient electromagnetic data. Geophysics 59:1542–1550

    Article  Google Scholar 

  • Sorensen KI, Efferso F, Auken E (2001) A hydrogeophysical investigation of the island of Drejo. Eur J Environ Eng Geophys 6:109–124

    Google Scholar 

  • Sumner JS (1976) Principles of induced polarization for geophysical exploration. Developments in Economic Geology, vol 5. Elsevier, Amsterdam, 277 pp

  • Taylor K, Widmer M, Chesley M (1992) Use of transient electromagnetics to define local hydrogeology in an arid alluvial environment. Geophysics 57:343–352

    Article  Google Scholar 

  • Vanhala H, Soininen H (1995) Laboratory techniques for measurement of spectral induced polarization response of soil samples. Geophys Prospect 43:655–676

    Article  Google Scholar 

  • Vacquier V, Holmes CR, Kintzinger PR, Lavergne M (1957) Prospecting for groundwater by induced electrical polarisation. Geophysics 23:660–687

    Article  Google Scholar 

Download references

Acknowledegments

We highly appreciated the competence and the availability of Maria-Th. Schafmeister (Editor) and Susanne Schemann and Sue Duncan (Editorial Office); we are also grateful to two anonymous reviewers for their suggestions and comments, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Godio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boiero, D., Godio, A., Naldi, M. et al. Geophysical investigation of a mineral groundwater resource in Turkey. Hydrogeol J 18, 1219–1233 (2010). https://doi.org/10.1007/s10040-010-0604-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0604-2

Keywords

Navigation