Skip to main content

Characterization of the hydrogeology of the sacred Gihon Spring, Jerusalem: a deteriorating urban karst spring

Caractérisation de l’hydrogéologie de la source sacrée Gihon, Jérusalem: une source karstique urbaine en voie de dégradation

Caracterización de la hidrogeología del manantial sagrado de Gihon, Jerusalén: un manantial kárstico urbano en deterioro

耶路撒冷Gihon圣泉水文地质特征:一个退化的城市岩溶泉

Caraterização hidrogeológica da Nascente sagrada de Gihon, Jerusalém: Uma nascente cársica urbana em deterioração

Abstract

The Gihon Spring, Jerusalem, is important for the major monotheistic religions. Its hydrogeology and hydrochemistry is studied here in order to understand urbanization effects on karst groundwater resources, and promote better water management. High-resolution monitoring of the spring discharge, temperature and electrical conductivity, was performed, together with chemical and bacterial analysis. All these demonstrate a rapid response of the spring to rainfall events and human impact. A complex karst system is inferred, including conduit flow, fissure flow and diffuse flow. Electrical conductivity, Na+ and K+ values (2.0 mS/cm, 130 and 50 mg/l respectively) are very high compared to other nearby springs located at the town margins (0.6 mS/cm, 15 and <1 mg/l respectively), indicating considerable urban pollution in the Gihon area. The previously cited pulsating nature of the spring was not detected during the present high-resolution monitoring. This phenomenon may have ceased due to additional water sources from urban leakage and irrigation feeding the spring. The urbanization of the recharge catchment thus affects the spring water dramatically, both chemically and hydrologically. Appropriate measures should therefore be undertaken to protect the Gihon Spring and other karst aquifers threatened by rapid urbanization.

Résumé

La source Gihon, Jérusalem, est importante pour les principales religions monothéistes. Son étude hydro-géologique et hydrochimique, présentée ici, veut faire comprendre les effets de l’urbanisation sur la nappe karstique et promouvoir une meilleure gestion de l’eau. Des enregistrements haute résolution du débit de la source, de sa température et de sa conductivité électrique ont été réalisés, en même temps que des analyses chimiques et bactériologiques. Cet ensemble de mesures montre une réponse rapide de la source à la pluviométrie, ainsi qu’un impact humain. On suppose l’existence d’un système karstique complexe, avec écoulement par conduit, écoulement fissural et diffus. La conductivité électrique, les concentrations Na+ et K+ (2.0 mS/cm, 130 and 50 mg/l respectivement) sont très élevées comparativement aux autres sources proches de la ville (0.6 mS/cm, 15 and <1 mg/l respectivement), marquant une pollution urbaine considérable dans le secteur de Gihon. Le caractère intermittent de la source antérieurement signalé n’a pas été noté durant le suivi haute résolution réalisé: le phénomène peut avoir cessé en raison d’apports d’eau complémentaires, fuite de canalisations urbaines, irrigation. L’urbanisation du bassin d’alimentation affecte ainsi l’eau de source de manière dramatique, à la fois du point de vue chimique et hydrologique. C’est pourquoi des mesures appropriées devraient être prises pour protéger la source Gihon et d’autres aquifères karstiques menacés par une urbanisation rapide.

Resumen

El manantial de Gihon, Jerusalén, es importante para las principales religiones monoteístas. Aquí se estudia su hidrogeología e hidrogeoquímica con el objeto de entender los efectos de la urbanización en los recursos de aguas subterráneas kársticos, y promover un mejor manejo del agua. Se llevó a cabo un monitoreo de alta resolución de la descarga, temperatura y conductividad eléctrica del manantial, conjuntamente con análisis químicos y bacteriológicos. Todo esto demuestra una rápida respuesta del manantial a los eventos lluviosos y al impacto humano. Se dedujo un sistema kárstico complejo, que incluye flujo de conducto, flujo de fisuras y flujo difuso. Los valores de la conductividad eléctrica, Na+ y K+ (2.0 mS/cm, 130 y 50 mg/l respectivamente) son muy altos comparados a otros manantiales cercanos localizados en las márgenes de la ciudad (0.6 mS/cm, 15 y <1 mg/l respectivamente), lo que indica una considerable contaminación urbana en el área de Gihon. La naturaleza pulsátil del manantial previamente citada no fue detectada durante el presente monitoreo de alta resolución. Este fenómeno puede haber cesado debido a la presencia de fuentes de agua adicionales de filtraciones urbanas y de la irrigación que alimentan al manantial. La urbanización de la cuenca de recarga afecta así el agua del manantial dramáticamente, tanto química como hidrológicamente. Se deben tomar por lo tanto medidas apropiadas para proteger el manantial de Gihon y otros acuíferos kárstico amenazados por la rápida urbanización.

摘要

耶路撒冷Gihon泉对主要的一神教非常重要。本文对其水文地质和水化学特征进行了研究, 以弄清城市化对岩溶地下水资源的影响, 改进水管理。对泉流量、温度和电导率进行了高精度监测, 并进行了化学和细菌分析。所有数据都表明泉对降雨和人类活动影响反应灵敏。推断其为一个复杂的岩溶系统, 包括管道流、裂隙流和扩散流。电导率, Na+ 和K+ (分别为 2.0 mS/cm, 130 和50 mg/l) 与邻近的城镇边缘的其他泉 (分别为0.6 mS/cm,15和<1 mg/l) 相比非常高, 表明Gihon地区有相当严重的城市污染。在高精度监测过程中, 并未发现之前文献中所述的泉流量的脉动特征。由于城市渗漏和灌溉对泉的额外补给, 这一现象或已停止。因此, 补给流域的城市化对泉的化学和水文特征有强烈影响。因此, 应采取适当手段来保护受到急剧城市化威胁的Gihon泉及其它岩溶含水层。

Resumo

A nascente de Gihon, em Jerusalém, é importante para as maiores religiões monoteístas. A sua hidrogeologia e hidroquímica são estudadas no presente trabalho, de modo a entender os efeitos da urbanização nos recursos subterrâneos cársicos e para promover uma melhor gestão da água. Foram realizadas a monitorização de alta resolução do caudal da nascente, da temperatura e da conductividade eléctrica, juntamente com análises químicas e bacteriológicas. As medidas demonstram a rápida resposta da nascente aos eventos de precipitação e impacte humano. Inferiu-se um sistema cársico complexo, incluindo fluxo por condutas, fluxo por fissuras e fluxo difuso. A conductividade eléctrica, a concentração de Na+ e de K+ (2.0 mS/cm, 130 and 50 mg/l, respectivamente) são muito altas comparativamente a outras nascentes próximas, localizadas na periferia da cidade (0.6 mS/cm, 15 and <1 mg/l, respectivamente), indicando um nível de poluição urbana considerável na área de Gihon. O comportamento pulsante da nascente, anteriormente referido, não foi detectado durante a actual monitorização de alta resolução. Este fenómeno pode ter terminado devido a fontes de água adicionais, provenientes da infiltração de águas urbanas e de rega, que alimentam a nascente. A urbanização da bacia de recarga está a afectar dramaticamente a água da nascente, tanto a nível químico como hidrológico. Deste modo, devem ser tomadas as medidas apropriadas para proteger a Nascente de Gihon e outros aquíferos cársicos ameaçados pela rápida urbanização.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Amit H (2000) Analysis of water discharge of springs in Israel, MSC Thesis, Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel

  • Amit H, Lyakhovsky V, Katz A, Starinsky A, Burg A (2002) Interpretation of spring recession curves. Ground Water 40(5):543–552

    Article  Google Scholar 

  • Amiran R (1976) The water supply of Israelite Jerusalem. In: Yadin Y (ed) Jerusalem revealed. Israel Exploration Society, Jerusalem, pp 75–78

    Google Scholar 

  • Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema, Rotterdam, 536 pp

    Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Barret MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources: a review and case study in Nottingham, UK. Water Res 33:3083–3097

    Article  Google Scholar 

  • Ben-Aryeh Y (1977) A city reflected in its times: Jerusalem in the nineteenth century, the Old City (in Hebrew). Yad Ben-Zvi, Jerusalem

    Google Scholar 

  • Birk S, Liedl R, Sauter M (2004) Identification of localized recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193

    Article  Google Scholar 

  • Bonacci O (1987) Karst hydrology, with special reference to the Dinaric Karst. Springer, Heidelberg, Germany

    Google Scholar 

  • Burg A (1998) Geochemistry and hydrology of perched carbonate aquifers in northern and central Israel (in Hebrew). PhD Thesis, The Hebrew University of Jerusalem, Israel

  • Civita MV (2008) An improved method for delineating source protection zones for karst springs based on analysis of recession curve data. Hydrogeol J 16(5):855–869

    Article  Google Scholar 

  • Chapelle FH (2001) Ground-water microbiology and geochemistry. Wiley, New York

    Google Scholar 

  • Doctor DH (2008) Hydrologic connections and dynamics of water movement in the classical karst (kras) aquifer: evidence from frequent chemical and stable isotope sampling. Acta Carsolog 37:101–123

    Google Scholar 

  • Felton GK, Currens JC (1994) Peak flow rate and recession curve characteristics of a karst spring in the inner bluegrass, central Kentucky. J Hydrol 162(1–2):99–118

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK

    Google Scholar 

  • Frumkin A (1993) Karst origin of the upper erosion surface in the northern Judean Mountains, Israel. Isr J Earth Sci 41:169–176

    Google Scholar 

  • Frumkin A, Fischhendler I (2005) Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions. Geomorphology 67:457–471

    Article  Google Scholar 

  • Frumkin A, Shimron A (2006) Tunnel engineering in the Iron Age: geoarchaeology of the Siloam Tunnel, Jerusalem. J Archaeol Sci 33:227–237

    Article  Google Scholar 

  • Frumkin A, Shimron A, Rosenbaum J (2003) Radiometric dating of the Siloam Tunnel, Jerusalem. Nature 425:169–171

    Article  Google Scholar 

  • Gale SJ (1984) The hydraulics of conduit flow in carbonate aquifers. J Hydrol 70:309–327

    Article  Google Scholar 

  • Gill D (1997) The geology of the City of David and its ancient subterranean waterworks, Qedem, 35, Monographs of Institution of Archaeology, Hebrew University of Jerusalem, vol IV, pp 1–28

  • Goldreich Y (1998) The climate of Israel: observations, research and applications (in Hebrew). Bar Ilan University, Ramat Gan, Israel

  • Grasso DA, Jeannin P-Y (2002) A global experimental system approach of Karst Springs’ hydrographs and chemographs. Ground Water 40(6):608–618

    Article  Google Scholar 

  • Grasso DA, Jeannin P-Y, Zwahlen F (2003) A deterministic approach to the coupled analysis of karst springs’ hydrographs and chemographs. J Hydrol 271:65–76

    Article  Google Scholar 

  • Gvirtzman H (2002) Israel Water Resources: chapters in hydrology and environmental sciences (in Hebrew). Yad Ben-Zvi, Jerusalem

    Google Scholar 

  • IHS-ISO (2008) Hydrometry-open channel flow measurements using thin-plate weirs, 2nd edn. IHS-ISO, Englewood, NJ

  • Itzhaki Y, Arkin Y (1964) Structural map of Israel: Jerusalem-Bet Shemesh, 1:50,000. Geological Survey of Israel, Jerusalem

    Google Scholar 

  • Itzhaki Y, Arkin Y, Braun M, Lasman N (1964) Geology Map of Israel: Jerusalem-Bet Shemesh, 1:50,000. Geological Survey of Israel, Jerusalem

    Google Scholar 

  • JISS (Jerusalem Institute for Israel Studies) (2006–2007) Statistical yearbook of Jerusalem, JISS, Jerusalem. www.jiis.org.il. Cited 6 Aug 2007

  • Kaplan M, Kimhi I, Choshen M (2000) The Jerusalem Hills and the Judea Coastal Plain: policy for land conservation and sustainable development (in Hebrew). Keter, Jerusalem

    Google Scholar 

  • Kondoh A, Nishiyama J (2000) Changes in hydrological cycle due to urbanization in the suburb of Tokyo metropolitan area, Japan. Adv Space Res 26:1173–1176

    Article  Google Scholar 

  • Kroitoru L (1987) The characterization of flow systems in carbonatic rocks defined by the ground water parameters: Central Israel, PhD Thesis, Weizmann Institute of Science, Rehovot, Israel

  • Krawczyk WE, Ford DC (2008) Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surf Proc Landf 31:221–234

    Article  Google Scholar 

  • Lerner DN (1986) Leaking pipes recharge groundwater. Ground Water 24:654–662

    Article  Google Scholar 

  • Mao X, Enot P, Barry DA, Li L, Binley A, Jeng D-S (2006) Tidal influence on behavior of a coastal aquifer adjacent to a low-relief estuary. J Hydrol 327(1–2):110–127

    Article  Google Scholar 

  • Milanovic PT (1981) Karst hydrogeology. Water Resources, Littleton, CO

    Google Scholar 

  • Misstear BDR, Brown L, Daly D (2009) A methodology for making initial estimates of groundwater recharge from groundwater vulnerability mapping. Hydrogeol J 17(2):275–285

    Article  Google Scholar 

  • Perrin J, Jeannin P-Y, Zwahlen F (2003) Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura. Hydrogeol J 11:673–686

    Article  Google Scholar 

  • Picard LA (1956) Geology, the book of Jerusalem: Jerusalem, its natural conditions, history and development from its origins to the present day (in Hebrew), vol 1. The Bialik Institute, Jerusalem, pp 35–44

  • Pronk M, Goldscheider N, Zopfi J (2006) Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeol J 14:473–484

    Article  Google Scholar 

  • Pronk M, Goldscheider N, Zopfi J, Zwahlen F (2009) Percolation and particle transport in the unsaturated zone of a karst aquifer. Ground Water 47(3):361–369

    Article  Google Scholar 

  • Raeisi E, Groves C, Meiman J (2007) Effects of partial and full pipe flow on hydrochemographs of Logsdon River, Mammoth Cave Kentucky USA. J Hydrol 337:1–10

    Article  Google Scholar 

  • Reich R, Shukrun E (1998) New excavations in the City of David: innovations in Jerusalem Research (in Hebrew). Bar Ilan University Conference New Studies on Jerusalem, Ramat Gan, Israel, 10 December 1998

  • Reich R, Shukrun E (2004) The history of the Gihon Spring in Jerusalem. Levant 36:211–223

    Google Scholar 

  • Robinson E, Smith E (1838) Biblical researches in Palestine, vol 2. University of Michigan Library, Ann Arbor, MI

  • Salus M (2001) The impact of enhanced urbanization in Ramallah on adjacent groundwater (in Hebrew). MSc Thesis, The Hebrew University of Jerusalem, Israel

    Google Scholar 

  • Schot PP, van der Wal J (1992) Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. J Hydrol 134:297–313

    Article  Google Scholar 

  • Sepúlveda N (2009) Analysis of methods to estimate spring flows in a karst aquifer. Ground Water 47(3):337

    Article  Google Scholar 

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means of characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Tobarov K (1976) Estimation of permeability and effective porosity in karst on the basis of recession curve analysis. In: Yevjevich V (ed) Karst hydrology and water resources, vol 1, karst hydrology. Water Resources, Littleton, CO

    Google Scholar 

  • Todd DK (1959) Ground water hydrology, 1st edn. Toppan, Tokyo

    Google Scholar 

  • Vazquez S, Sanchez-Vila EX, Carrera J (2005) Introductory review of specific factors influencing urban groundwater, an emerging branch of hydrogeology, with reference to Barcelona, Spain. Hydrogeol J 13:522–533

    Article  Google Scholar 

  • Vesper DJ, White WB (2004) Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA. Hydrogeol J 12:135–143

    Article  Google Scholar 

  • Vincent LH (1911) Underground Jerusalem: discoveries on the Hill of Ophel (1909–11). Cox, London

    Google Scholar 

  • Warren C, Conder CR (1884) Survey of western Palestine. Palestine Exploration Fund, London

    Google Scholar 

  • Water Commission Hydrological Service (1970–1998) Hydrological Year-Books of Israel, Ministry of Agriculture, WCHS, Jerusalem

  • Westbrook SJ, Rayner JL, Davis GB, Clement TP, Bjerg PL, Fisher SJ (2005) Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. J Hydrol 302:255–269

    Article  Google Scholar 

  • Worthington SRH (2005) Hydraulic and geological factors influencing conduit flow depth. Speleog Evol Karst Aquifers 3(1):1–19. www.speleogenesis.info. Cited February 2009

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 47(3):326–336

    Article  Google Scholar 

  • Yaalon DH, Ganor E (1968) Chemical composition of dew and dry fallout in Jerusalem, Israel. Nature 217:1139–1140

    Article  Google Scholar 

  • Yisraeli A (1973) A Study of the geo-engineering features of the Jerusalem rock foundation: Geo-Technical Mapping (in Hebrew). MSc Thesis, The Hebrew University of Jerusalem, Israel

Download references

Acknowledgements

This study was funded by the Israel Water Commission together with the Hydrological Service of Israel. The Israel Meteorology Service supplied the meteorological data. N. Keshet, E. Cohen and A. Tzippori of the Parks and Nature Authority of Israel assisted in bacterial analyses and fieldwork. Cooperation was granted by the City of David Visitors’ Center. M. Zilberbrand from the Hydrological Service provided laboratory analysis assistance. The Cave Research Unit team of the Hebrew University Geography Department assisted with the fieldwork. Finally, a special thank to the late Achikam Amichai who helped a lot in harsh conditions during our fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Frumkin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amiel, R.B., Grodek, T. & Frumkin, A. Characterization of the hydrogeology of the sacred Gihon Spring, Jerusalem: a deteriorating urban karst spring. Hydrogeol J 18, 1465–1479 (2010). https://doi.org/10.1007/s10040-010-0600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0600-6

Keywords

  • Urban groundwater
  • Spring hydrograph
  • Hydrochemistry
  • Contamination
  • Israel