Skip to main content
Log in

Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods

Interaction nappe-drains de surface dans Ord River Irrigation Area, Australie du Nord: investigation multiparamètrique

Interacción de aguas subterráneas con drenes superficiales en el área de irrigación del río Ord, norte de Australia: investigación por métodos múltiples

多种方法研究澳大利亚北部Ord河灌区地下水与排水渠的相互作用

Interacção da água subterrânea com drenos superficiais na Área de Rega do Rio Ord, Norte da Austrália: investigação através de múltiplos métodos

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Following 35 years of persistent groundwater rise beneath northern Ivanhoe Plain in the Ord River Irrigation Area, northern Australia, the water table appears to have stabilized near the base of the irrigation surface-drain network. Hydrometric evidence indicates that intersection of the deepest surface drains by the rising water table simultaneously reduced aquifer recharge from surface-water infiltration and increased aquifer discharge by groundwater exfiltration. Water-table analysis supports the working hypothesis that the largest irrigation drain D4 on north Ivanhoe Plain has been receiving a significant amount of groundwater discharge since the mid-1990s. The rate of groundwater discharge to surface drains on north Ivanhoe Plain was estimated to be around 15–20 million (M)L/day based on groundwater-flow modelling. Groundwater tracing using radon and electrical conductivity indicated that groundwater discharge to drain D4 was ∼6–12 ML/day in August 2007. The rate of groundwater discharge was significantly larger where the drain traverses a very-permeable sand and gravel palaeochannel. Relatively modest exfiltration rates of order of magnitude tens to hundreds of mm/day into the drain were estimated to mitigate 0.5 m/year groundwater accretion for a land area of order of magnitude hundreds to thousands of ha.

Résumé

Après 35 ans d’élévation continuelle de son niveau au Nord de Ivanhoe Plain, dans la zone d’irrigation Ord River, Australie du Nord, la surface libre de la nappe paraît s’être stabilisée près du soubassement du réseau des drains d’irrigation superficiels. On a la preuve hydrométrique que la rencontre de la nappe ascendante avec les drains les plus profonds a simultanément réduit l’infiltration vers l’aquifère et accru sa décharge par exfiltration. Hypothèse de travail confortée par l’analyse de la surface libre de la nappe, un volume considérable d’eau de décharge a, depuis mi-1990, alimenté le drain d’irrigation D4, le plus grand. Le taux de décharge de la nappe dans les drains de surface au Nord de Ivanhoe Plain a été estimé entre 15 et 20 million de litre par jour (M)L/jour, sur la base d’une modélisation de l’écoulement. Un traçage utilisant radon et conductivité électrique a montré que la décharge de nappe dans le drain D4 était approximativement de 6 à12 million L/jour en août 2007. Le taux de décharge de nappe était sensiblement plus grand là où le drain recoupe un paléochenal très perméable de sable et de gravier. On estime que des taux d’exfiltration dans le drain relativement modérés, de l’ordre de plusieurs dizaines à plusieurs centaines de mm/jour, ont réduit à 0.5 m/an l’augmentation de la réserve de l’aquifère sur une superficie de terrain de l’ordre de plusieurs centaines à plusieurs milliers d’ha.

Resumen

Después de 35 años de persistente elevación del agua subterránea debajo de la planicie norte de Ivanhoe en el área de irrigación del Río Ord, Australia del Norte, el nivel freático parece haberse estabilizado cerca de la base de la red superficial de irrigación y drenaje. La evidencia hidrométrica indica que la intersección de los drenes superficiales más profundos con el ascendente nivel freático redujo simultáneamente la recarga del acuífero a partir de la infiltración de agua superficial e incrementó la descarga del acuífero por la exfiltración del agua subterránea. El análisis de los niveles freáticos apoya las hipótesis de trabajo que el mayor dren de irrigación D4 en la planicie norte de Ivanhoe ha estado recibiendo una cantidad significativa de descarga de agua subterránea desde los mediados de 1990. El ritmo de descarga de las aguas subterráneas a los drenes superficiales en la planicie Ivanhoe norte fue estimada en alrededor de 15–20 millones (M)L/d basado en un modelo de flujo de aguas subterráneas. El seguimiento de las aguas subterráneas usando el radon y la conductividad eléctrica como trazadores indicó que la descarga de aguas subterráneas al dren D4 era aproximadamente 6–12 ML/d en agosto de 2007. El ritmo de descarga de aguas subterráneas fue significativamente mayor donde el dren atraviesa un paleocanal de arena y grava muy permeable. Se estimó que ritmos relativamente modestos de exfiltración del orden de decenas a cientos de mm/d hacia el dren mitigan 0.5 m/año de acumulación de agua subterránea para un área territorial del orden de cientos a miles de ha.

摘要

摘要 : 在澳大利亚北部Ord河灌区Ivanhoe平原北部的地下水持续上升35年来, 灌区排水渠网底部附近的水位已达到稳定。水文测验表明, 最深的排水渠与上升的地下水面相交会减少地表水入渗对含水层的补给, 同时通过地下水出流增加含水层的排泄。最大的灌渠——位于Ivanhoe平原北部的D4自1990s中期以来已接受大量的地下水排泄, 这一工作假设为水位分析所支持。基于地下水流模拟算得Ivanhoe平原北部向排水渠的地下水排泄速率为15-20ML/d。氡和电阻率地下水示踪表明, 2007年8月, 向D4排水渠的地下水排泄速率约为6–12ML/d。而当排水渠横穿高渗透性砂、砾石古河道时, 地下水排泄速率要大得多。相对保守的向排水渠的地下水出流速率在几十至几百mm/d量级, 相当于削减土地面积为几百至几千公顷时0.5 m/yr的地下水储量增量

Resumo

Depois de 35 anos de subida persistente dos níveis de água subterrânea subjacente à Planície do Norte de Ivanhoe, na Área de Rega do Rio Ord, Norte da Austrália, o nível freático parece ter estabilizado próximo da base da rede de rega superficial por drenos. Evidências hidrométricas indicam que a intersecção dos drenos superficiais mais profundos pelo nível freático em ascensão reduziu simultaneamente a recarga do aquífero através da infiltração da água superficial e, ao mesmo tempo, aumentou a descarga do aquífero, através da exfiltração de água subterrânea. A análise do nível freático suporta a hipótese de que o maior dreno de rega D4, na Planície do Norte de Ivanhoe, tem vindo a receber uma quantidade significativa de descarga de água subterrânea desde metade dos anos 1990. A taxa de descarga subterrânea para os drenos superficiais na Planície do Norte de Ivanhoe, baseada na modelação de água subterrânea, foi estimada em cerca de 15–20 milhões de (M)L/d. A traçagem de água subterrânea, usando radão e conductividade eléctrica, indica que a descarga subterrânea para o dreno D4 era aproximadamente de 6–12 ML/d em Agosto de 2007. A taxa de descarga subterrânea era significativamente maior nas zonas onde o dreno atravessa um paleocanal muito permeável de areias e calhaus. Foram estimadas taxas de exfiltração relativamente modestas para o dreno, da ordem das dezenas a centenas de mm/d de magnitude, para mitigar a adição de 0.5 m/ano de água subterrânea para uma área da ordem das centenas a milhares de ha de magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Article  Google Scholar 

  • Christen EW, Hornbuckle JW (2001) Subsurface drainage design and management practices in irrigated areas of Australia. Irrigation insights No. 2. Land and Water Australia, Canberra, Australia

  • Christen EW, Ayars JE, Hornbuckle JW (2001) Subsurface drainage design and management in irrigated areas of Australia. Irrig Sci 21:35–43

    Article  Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  Google Scholar 

  • Cook PG, Stieglitz T, Clark J (2004) Groundwater discharge from the Burdekin Floodplain Aquifer, North Queensland. Technical report No. 26/04. CSIRO Land and Water, Adelaide, Australia

  • Cook PG, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42, W10411

    Article  Google Scholar 

  • Diersch H-JG (2005) FEFLOW finite element subsurface flow & transport simulation system: reference manual. WASY, Berlin, Germany

    Google Scholar 

  • El-Bakri A, Tantawi MA, Hamza MS, Awad MA (1996) Estimation of groundwater inflow to irrigation drains in Minia, Upper Egypt, based on deuterium and oxygen-18 evaporation pan technique. Hydrol Sci 41(1):41–48

    Article  Google Scholar 

  • Ellins KK, Roman-Mas A, Lee R (1990) Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. J Hydrol 115:319–341

    Article  Google Scholar 

  • Fetter CW (1994) Applied Hydrogeology, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Genereux DP, Hemond HF, Mulholland PJ (1993) Use of radon-222 and calcium as traces in a three-end-member mixing model for streamflow generation on the West Fork of Walker Branch Watershed. J Hydrol 142:167–211

    Article  Google Scholar 

  • Hamada H, Komae T (1998) Analysis of recharge by paddy field irrigation using 222Rn concentration in groundwater as an indicator. J Hydrol 205:92–100

    Article  Google Scholar 

  • Hayashi M (2004) Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ Monit Assess 96:119–128

    Article  Google Scholar 

  • Jayatilaka CJ, Storm B, Mudgway LB (1998) Simulation of water flow on irrigation bay scale with MIKE-SHE. J Hydrol 208:108–130

    Article  Google Scholar 

  • Kafri U (2001) Radon in groundwater as a tracer to assess flow velocities: two test cases from Israel. Environ Geol 40(3):392–398

    Article  Google Scholar 

  • Kies A, Hofmann H, Tosheva Z, Hoffmann L, Pfister L (2005) Using 222Rn for hydrograph separation in a micro basin (Luxembourg). Annal Geophys 48(1):101–107

    Google Scholar 

  • Lawrie K, Clarke J, Hatch M et al (2006) Improving hydrogeological models of aquifer systems for salinity and water management in the Ord irrigation area: a pilot study into the use of geophysics and other geoscience methods. CRC LEME restricted report 232R, CRC LEME, Canberra, Australia

  • Leaney FW, Herczeg AL (2006) A rapid field extraction method for determination of radon-222 in natural waters by liquid scintillation counting. Limnol Oceanogr Methods 4:254–259

    Google Scholar 

  • Mudgway LB, Nathan RJ, McMahon TA, Malano HM (1997) Estimating salt loads in high water table areas. I: identifying processes. J Irrig Drain Eng 79–90

  • O’Boy CA, Tickell SJ, Yestertener C et al (2001) Hydrogeology of the Ord Irrigation Area. Hydrogeological Record Series report HG 7, Western Australian Water and Rivers Commission, Perth, Australia

  • Oxtobee JPA, Novakowski K (2002) A field investigation of groundwater/surface water interaction in a fractured bedrock environment. J Hydrol 269:169–193

    Article  Google Scholar 

  • Passo CJ Jr, Floeckher M (1991) The LSC approach to radon counting in air and water. In: Harley R, Noakes JE, Spaulding JD (eds) Liquid scintillation counting and organic scintillators. Lewis, Boca Raton, FL

    Google Scholar 

  • Rengasamy P (2006) World salinisation with emphasis on Australia. J Exp Bot 57(5):1017–1023

    Article  Google Scholar 

  • Ruprecht JK, Rodgers SJ (1999) Hydrology of the Ord River. Water resource technical series report No. WRT 24. Western Australian Water and Rivers Commission, Perth, Australia

  • Shinn E, Reich C, Hickey T (2002) Seepage meters and Bernoulli’s revenge. Estuaries 25(1):126–132

    Article  Google Scholar 

  • Smith AJ (2008) Rainfall and irrigation controls on groundwater rise and salinity risk beneath the Ord River Irrigation Area, northern Australia. Hydrogeol J 16(6):1159–1175

    Article  Google Scholar 

  • Smith AJ, Price A (2009) Review and assessment of soil salinity in the Ord River Irrigation Area. CSIRO, Perth, Australia

    Google Scholar 

  • Smith AJ, Pollock DW, Salama RB et al (2005) Ivanhoe Plain aquifer pumping trial July 2003–April 2005: Stage 1 Ord River Irrigation Area, Kununurra, Western Australia. Technical Report 24/05. CSIRO Land and Water, Perth, Australia

  • Smith AJ, Pollock DW, Palmer D (2006) Groundwater management options to control rising groundwater level and salinity in the Ord Stage 1 Irrigation Area, Western Australia. Science report 70/06. CSIRO Land and Water, Perth, Australia

  • Smith AJ, Pollock D, Palmer D (2007) Ord River Irrigation Area (ORIA) groundwater drainage and discharge evaluation: survey of groundwater quality 2006. Science report 44/07. CSIRO Land and Water, Perth, Australia

  • Smith A, Pollock D, Palmer D (2009a) Ord River Irrigation Area annual groundwater elevation and water-table depth 1995 to 2008. CSIRO, Perth, Australia

    Google Scholar 

  • Smith AJ, Palmer D, Carwardine B (2009b) Evaluation of a trial groundwater drain on Ivanhoe Plain in the Ord River Irrigation Area. CSIRO, Perth, Australia

    Google Scholar 

  • Tanji KK, Kielen NC (2000) Agricultural drainage water management in arid and semi-arid areas. FAO Irrigation and Drainage Paper 61. FAO, Rome

  • Taylor JR (1982) An introduction to error analysis, the study of uncertainties in physical measurements, 2nd edn. University Science Books, New York

    Google Scholar 

  • Thorpe PM (1995) Radon-222 content of groundwater in Western Australia. Annual Review 1993–94, Technical paper, Western Australian Geological Survey, Perth, Australia

  • Viney N (2003) Modelling surface water in the ORIA. Technical report 39/03. CSIRO Land and Water, Perth, Australia

Download references

Acknowledgements

Hydrological data used in this study were kindly provided by the Western Australian Department of Water, the Australian Bureau of Meteorology, and the Ord Irrigation Co-operative. The authors thank Mr Fred Leaney and Dr Peter Cook from CSIRO Land and Water for reviewing the manuscript prior to submission to Hydrogeology Journal. We also thank the anonymous reviewers for Hydrogeology Journal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.J., Pollock, D.W. & Palmer, D. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: investigation by multiple methods. Hydrogeol J 18, 1235–1252 (2010). https://doi.org/10.1007/s10040-010-0596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0596-y

Keywords

Navigation