Skip to main content
Log in

Geological controls and effects of floodplain asymmetry on river–groundwater interactions in the southeastern Coastal Plain, USA

Contrôles géologiques et incidences de l’asymétrie du lit majeur sur les interactions rivière–nappe, Coastal Plain du Sud-Est, USA

Los controles geológicos y los efectos de la asimetría de la planicie de inundación sobre las interacciones río–agua subterránea en la Coastal Plain sudoriental, EEUU

美国东南部滨海平原地质因素与河漫滩不对称性对河流–地下水相互作用的影响

Controlo geológico e efeitos da assimetria das planícies de inundação nas interacções rio–água subterrânea na Planície Costeira sudeste, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Channel sediment and alluvial aquifer hydraulic properties exert a major control on river–groundwater interactions. Channels and floodplains are often asymmetrical, resulting in differences in sediment hydraulic properties across the river. Floodplain asymmetry is common along Coastal Plain rivers in South Carolina and North Carolina, USA. The Tar River, North Carolina, has an asymmetrical valley. The study objective was to characterize the effects of floodplain asymmetry and geological controls on river–groundwater interactions. Floodplain and river channel sediments adjacent to the river were characterized with split spoon cores and hand auger samples along a 22-km reach. Hydrogeology was characterized with 38 piezometers and water level recorders in and adjacent to the river. Ground penetrating radar was used to define the shallow stratigraphy. Channel sediments were significantly different between the north and south sides of the river. Hydraulic conductivity and groundwater inputs were greater on the side of the river (north) that contained more permeable fluvial deposits. Groundwater chemistry (δ18O, specific conductance) data also suggested greater exchange between surface water and groundwater on the north side of the river channel. A conceptual hydrogeological model illustrates that groundwater movement and contaminant transport to the river differs across the channel due to asymmetrical geology.

Résumé

Propriétés des sédiments du lit mineur et caractéristiques hydrauliques de l’aquifère alluvial exercent un contrôle majeur sur les interactions rivière–nappe. Lit mineur et lit majeur sont souvent asymétriques en raison de différences entre les caractéristiques hydrauliques des sédiments de part et d’autre de la rivière. L’asymétrie du lit majeur est commune le long des rivières de la Costal Plain, Caroline du Sud et Caroline du Nord, USA. La rivière Tar, Caroline du Nord, a une vallée asymétrique. L’objectif de l’étude était de caractériser les effets de l’asymétrie du lit majeur et des contrôles géologiques sur les interactions rivière–nappe. Les sédiments du lit majeur et des berges ont été analysés sur carottes tube fendu et prélèvements à la tarière à bras suivant un profil de 22 km. L’hydrogéologie a été caractérisée avec 38 limnimètres et piézomètres implantés à proximité de la rivière. L’imagerie radar a été utilisée pour définir la stratigraphie de sub-surface. Les sédiments des berges Nord et Sud de la rivière diffèrent sensiblement. Conductivité hydraulique et recharge sont plus grandes côté Nord, qui présente plus de dépôts fluviaux perméables. La géochimie de nappe (δ18O, conductivité spécifique) suggère aussi un plus grand échange eau de surface-eau de nappe sur la rive Nord. Un modèle hydrogéologique conceptuel montre qu’écoulement de nappe et apport de polluant à la rivière diffèrent de part et d’autre du lit mineur en raison d’une géologie asymétrique.

Resumen

Los sedimentos del cauce y las propiedades hidráulicas del acuífero aluvial ejercen un control predominante sobre las interacciones río–agua subterránea. Los cauces y las planicies de inundación son a menudo asimétricas, lo que resulta en diferencias en las propiedades hidráulicas de los sedimentos a través del río. La asimetría de la planicie de inundación es común a lo largo de los ríos de la Coastal Plain en Carolina del Sur y Carolina del Norte, EEUU. El río Tar, Carolina del Norte, tiene un valle asimétrico. El objetivo del estudio fue caracterizar los efectos de la asimetría de la planicie de inundación y los controles geológicos sobre las interacciones río–agua subterránea. La planicie de inundación y los sedimentos del cauce adyacente al río fueron caracterizados con testigos de cuchara seccionados y muestras de barrenos manuales a lo largo de un tramo de 22 km. La hidrogeología fue caracterizada con 38 piezómetros y registradores de niveles de agua dentro del río y en sus adyacencias. El georradar fue usado para definir la estratigrafía somera. Los sedimentos de los cauces fueron significativamente diferentes entre los márgenes norte y sur del río. La conductividad hidráulica y la entrada de agua subterránea fueron mayores en la margen del río (norte) que contenía depósitos fluviales más permeables. Los datos químicos de agua subterránea (δ18O, conductividad específica) también sugirieron un mayor intercambio entre el agua superficial y agua subterránea en la margen norte del cauce del río. Un modelo hidrogeológico conceptual ilustra que el movimiento del agua subterránea y el transporte de contaminantes hacia el río difieren a través del cauce debido a la geología asimétrica.

摘要

河道沉积物和冲积含水层的水力性质对河流–地下水的相互作用起主要控制作用. 河道和河漫滩往往是不对称的, 这导致河流横断面上沉积物的水力性质存在差异. 沿美国南卡罗莱纳州和北卡罗莱纳州滨海平原上的河流, 河漫滩普遍呈不对称形态. 北卡罗莱纳州的Tar河具有不对称型河谷. 本次研究目标是刻画河漫滩不对称性对河流–地下水相互作用的影响和地质控制作用. 在22公里河段内, 利用对开式取土器岩芯和手动螺旋钻取土器样品描述了河漫滩和河流附近的河床沉积物特征. 用38个观测井和水位计研究了河流及附近的水文地质特征. 应用地质雷达确定了浅部地层. 河流南北两侧的河道沉积物差异明显. 在沉积物渗透性较好的河流一侧(北侧), 渗透系数和地下水输入量均较大. 地下水化学数据 (18O,电导率) 也显示河道北侧地表水和地下水之间的交换较强. 水文地质概念模型说明, 由于地质不对称性, 河流横断面上地下水和污染物向河流的运动和运移是不同的.

Resumo

As propriedades hidráulicas dos sedimentos de canal e do aquífero aluvial exercem um controlo elevado nas interacções rio–água subterrânea. Quer os canais, quer as planícies de inundação, são muitas vezes assimétricos, resultando em diferenças nas propriedades hidráulicas ao longo do rio. A assimetria das planícies de inundação é comum ao longo dos rios da Planície Costeira da Carolina do Sul e da Carolina do Norte, EUA. O Rio Tar, na Carolina do Norte, tem um vale assimétrico. O objectivo do estudo era a caracterização dos efeitos da assimetria da planície de inundação e do controlo geológico na interacção rio–água subterrânea. Os sedimentos da planície de inundação e do canal adjacente ao rio foram caracterizados com base em escavação com pá e em amostras obtidas com trado ao longo de um trecho de 22 km. A hidrogeologia foi caracterizada com base em 38 piezómetros e em equipamento de medição de níveis dentro e nas imediações do rio. O radar de penetração no solo foi usado para definir a estratigrafia a baixa profundidade. Os sedimentos de canal eram significativamente diferentes na margem norte e sul do rio. A condutividade hidráulica e o contributo de água subterrânea eram mais elevados no lado do rio (norte) que apresentava os depósitos fluviais mais permeáveis. Os dados químicos da água subterrânea (δ18O, condutividade específica) sugerem também uma interacção maior entre a água superficial e a água subterrânea na parte norte do canal do rio. Um modelo hidrogeológico conceptual mostra que o movimento de água subterrânea e o transporte de contaminantes para o rio difere de um lado para o outro do canal, devido à assimetria da geologia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baker GS, Jordan TE, Pardy J (2007) An introduction to ground penetrating radar (GPR). In: Baker GS, Jol HM (eds) Stratigraphic analyses using GPR. Geol Soc Am Spec Pap 432, 181 pp

  • Bales JD, Oblinger CJ, Sallenger AH Jr (2000) Two months of flooding in eastern North Carolina, September–October 1999: hydrologic, water quality, and geologic effects of Hurricanes Dennis, Floyd, and Irene. US Geol Surv Water Resour Invest Rep 00-4093

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428

    Article  Google Scholar 

  • Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WJ (2002) Influence of fracture anisotropy on ground water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40:242–257

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Coes AL, Spruill TB, Thomasson MJ (2007) Multiple-method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA. Hydrogeol J 15:773–788

    Article  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics. Wiley, New York

    Google Scholar 

  • Crews-Klein J (2002) Water woes in eastern North Carolina. North Carolina Rural Economic Development Center, Inc, Raleigh, NC

    Google Scholar 

  • Davis JL, Annan AP (1989) Ground penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  • Eshleman KN, Pollard JS, O’Brien AK (1994) Interactions between groundwater and surface water in a Virginia coastal plain watershed. 1. Hydrological flowpaths. Hydrol Process 8:389–410

    Article  Google Scholar 

  • Fan Y, Toran L, Schlische RW (2007) Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks: insights from numerical models. Water Resour Res 43:W01409. doi:10.1029/2006WR004864

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111

    Article  Google Scholar 

  • Hayashi M, Rosenberry DO (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40:309–316

    Article  Google Scholar 

  • Heath RC (1983) Basic Ground-water Hydrology. US Geol Surv Water Suppl Pap 2220

  • Horton JW, Zullo VA (1991) An introduction to the geology of the Carolinas. In: Horton JW, Zullo VA (eds) The geology of the Carolinas, chapter 17. The University of Tennessee Press, Knoxville, TN, pp 290–308

    Google Scholar 

  • Hupp CR (2000) Hydrology, geomorphology and vegetation of Coastal Plain rivers in the southeastern USA. Hydrol Process 14:2991–3010

    Article  Google Scholar 

  • Ivester AH, Godfrey-Smith DI, Brooks MJ, Taylor BE (2004) The timing of Carolina bay and inland dune activity on the Atlantic Coastal Plain of Georgia and South Carolina. Geol Soc Am Abstr Prog 36(5):69

    Google Scholar 

  • Johnson PK (2007) Characterization of surface water/ groundwater interactions along a Coastal Plain river. MS Thesis, East Carolina University, USA

  • Knighton D (1998) Fluvial forms and processes: a new perspective. Oxford University Press, New York

    Google Scholar 

  • Larkin RG, Sharp JM (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and ground-water flow direction in alluvial aquifers. Geol Soc Am Bull 104:1608–1620

    Article  Google Scholar 

  • Lee DR, Cherry JA (1978) A field exercise on ground water flow using seepage meters and minipiezometers. J Geol Educ 27:6–10

    Google Scholar 

  • Leigh DS (2006) Terminal Pleistocene braided to meandering transition in rivers of the southeastern USA. Catena 66:155–160

    Article  Google Scholar 

  • Leigh DS (2008) Late Quaternary climates and river channels of the Atlantic Coastal Plain, southeastern USA. Geomorphology 101:90–108

    Article  Google Scholar 

  • Leigh DS, Srivastava P, Brook GA (2004) Late Pleistocene braided rivers of the Atlantic Coastal Plain, USA. Quat Sci Rev 23:65–84

    Article  Google Scholar 

  • Lim KJ, Engel BA, Tang Z, Choi J, Kim K, Muthukrishnan S, Tripathy D (2005) Automated web GIS based hydrograph analysis tool, WHAT. J Am Water Resour Assoc 41:1407–1416

    Article  Google Scholar 

  • Maddry JW (1979) Geologic history of coastal plain streams, eastern Pitt County, North Carolina. MS Thesis, East Carolina University, USA

  • Mallinson D, Burdette K, Mahan S, Brook G (2008) Optically stimulated luminescence age controls on late Pleistocene and Holocene coastal lithosomes: North Carolina, USA. Quat Res 69:97–109

    Article  Google Scholar 

  • Mallinson D, Culver S, Riggs S, Thieler ER, Foster D, Wehmiller J, Farrell K, Pierson J (2010) Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA. Marine Geol 268:16–33

    Article  Google Scholar 

  • Marple RT, Talwani P (2000) Evidence for a buried fault system in the Coastal Plain of the Carolinas and Virginia: implications for neotectonics in the southeastern United States. GSA Bull 112(2):200–220

    Article  Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology. Springer, New York

    Google Scholar 

  • Moore CR (2009) Late Quaternary geoarchaeology and geochronology of stratified Aeolian deposits, Tar River, North Carolina. PhD Thesis, East Carolina University, USA

  • NC DENR (2003) Basinwide Planning Program: 2004 Tar-Pamlico River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources, Division of Water Quality, Raliegh, NC. Available at http://h2o.enr.state.nc.us/basinwide/tarpam_draft_dec2003.html. Cited 10 July 2009

  • NC DENR (2009a) Local water supply plans: Greenville, Tarboro, and Rocky Mount (2002). North Carolina NC DENR, Raliegh, NC. Available at http://www.ncwater.org/Water_Supply_Planning/. Cited 5 August 2009

  • NC DENR (2009b) North Carolina Division of Water Resources (DWR) ground water database access. In: Data and modeling. NC DENR, Raliegh, NC. Available at http://www.ncwater.org/Data_and_Modeling/Ground_Water_Databases/. Cited 10 August 2009

  • Nnadi FN, Sharek RC (1999) Factors influencing ground water sources under the direct influence of surface waters. J Environ Sci Health A34(1):201–215

    Article  Google Scholar 

  • Osborn G, Du Toit C (1991) Lateral planation of rivers as a geomorphic agent. Geomorphology 4:249–260

    Google Scholar 

  • Pellerin BA, Wollheim WM, Feng X, Vorosmarty CJ (2008) The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. Hydrol Process 22:1810–1818

    Article  Google Scholar 

  • Potter EK, Lambeck K (2003) Reconciliation of sea-level observations in the Western North Atlantic during the last glacial cycle. Earth Planet Sci Lett 217:171–181

    Article  Google Scholar 

  • Ramsey LA, Walker RT, Jackson J (2007) Geomorphic constraints on the active tectonics of southern Taiwan. Geophys J Int. doi:10.1111/j.1365-246X.2007.03444.x

    Google Scholar 

  • Robinson MA, Reay WG (2002) Groundwater flow analysis of a Mid-Atlantic outer coastal plain watershed, Virginia, U.S.A. Ground Water 40(2):123–131

    Article  Google Scholar 

  • Sexton WJ (1999) Alluvial valleys of the middle coastal plain of South Carolina. Southeast Geol 39(1):1–15

    Google Scholar 

  • Sheets RA, Damer RA, Whitteberry BL (2002) Lag times of bank filtration at a well field, Cincinnati, Ohio, USA. J Hydrol 266(3–4):162–174

    Article  Google Scholar 

  • Soller DR (1988) Geology and tectonic history of the Lower Cape Fear River Valley, southeastern North Carolina. US Geol Surv Prof Pap 1466-A

  • Soller DR, Mills HM (1991) Surficial geology and geomorphology. In: Horton JW Jr, Zullo VA (eds) The geology of the Carolinas, chapter 17. The University of Tennessee Press, Knoxville, TN, pp 290–308

    Google Scholar 

  • Southeast Regional Climate Center (2009) Historical climate summaries for Greenville, North Carolina. Southeast Regional Climate Center, University of North Carolina at Chapel Hill. Available at http://www.sercc.com/. Cited 5 August 2009

  • Spruill TB (2000) Statistical evaluation of effects of riparian buffers on nitrate and groundwater quality. J Environ Qual 29:1523–1538

    Article  Google Scholar 

  • Spruill TB, Tesoriero AJ, Mew HE Jr, Farrell KM, Harden SL, Colosimo AB, Kraemer SR (2005) Geochemisty and characteristics of nitrogen transport at a confined animal feeding operation in a Coastal Plain agricultural watershed, and implications for nutrient loading in the Neuse River Basin, North Carolina, 1999-2002. US Geol Surv Sci Invest Rep 2004-5283, 66 pp

  • Sumsion CT (1970) Geology and ground-water resources of Pitt County, North Carolina. US Geol Surv Ground Water Bull No. 18

  • Sun G, McNulty SG, Amatya DM, Skaggs RW, Swift LW, Shepard JP, Riekerk H (2002) A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the southern U.S. J Hydrol 263:92–104

    Article  Google Scholar 

  • Sweet WV, Geratz JW (2003) Bankfull hydraulic geometry relationships and recurrence intervals for North Carolina’s Coastal Plain. J Am Water Resour Assoc 39:861–871

    Article  Google Scholar 

  • USGS (2009) USGS Real-Time Water Data for North Carolina, Tarboro (02083500) and Greenville (02084000) stations. US Geological Survey, Reston, VA. Available at: http://waterdata.usgs.gov/nc/nwis/rt. Cited 4 April 2009

  • Williams JB, Pinder JE (1990) Ground-water flow and runoff in a Coastal Plain stream. Water Resour Bull 26:343–351

    Google Scholar 

  • Winner MD Jr, Coble RW (1996) Hydrogeologic framework of the North Carolina Coastal Plain: regional aquifer-system analysis-northern Atlantic Coastal Plain. US Geol Surv Prof Pap 1404-I

  • Winner MD Jr, Simmons CE (1977) Hydrology of the Creeping Swamp watershed, NC, with reference to potential effects of stream channelization. US Geol Surv Water Resour Invest Rep 77-26, 54 pp

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38(3):423–429

    Article  Google Scholar 

  • Workman SR, Serrano SE (1999) Recharge to alluvial valley aquifers from overbank flow and excess infiltration. J Am Water Resour Assoc 35(2):425–432

    Article  Google Scholar 

  • Zhang K, Liu K, Yang J (2004) Asymmetrical valleys created by the geomorphic response of rivers to strike-slip fault. Quat Res 62:310–315

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the City of Greenville, the North Carolina Wildlife Resources Commission, North Carolina Department of Transportation, and Dr. Stanley Riggs for river access and allowing us to install wells on their property. Dr. Riggs and Dr. Richard Spruill provided helpful advice on developing the conceptual hydrogeologic model for the Tar River. Thanks to John Woods and Jim Watson for technical assistance and coring and Robert Howard for drafting and providing LiDAR and soils maps. We appreciate the support of the North Carolina Water Resources Research Institute through WRRI Project No. 70215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Driscoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Driscoll, M., Johnson, P. & Mallinson, D. Geological controls and effects of floodplain asymmetry on river–groundwater interactions in the southeastern Coastal Plain, USA. Hydrogeol J 18, 1265–1279 (2010). https://doi.org/10.1007/s10040-010-0595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-010-0595-z

Keywords

Navigation