Abstract
Leaky aquifers provide protected drinking water since the aquifer is overlain by an aquitard, and this study develops a method to estimate hydraulic properties of the latter deposit. Steady pumping, supply well shutdowns, and slug tests generate data in adjacent monitoring well clusters that characterize the aquitard. An existing steady model estimates a site-averaged value of the aquitard permeability k if its thickness is known, and this site-averaged estimate may be compared with local k estimates from conventional and extended slug tests. A shutdown attenuation model estimates a local value of the consolidation coefficient C V, which combines with the local k value to specify the compressibility α of the aquitard. The method is illustrated for the Fowl Meadow Aquifer, a stratified drift deposit used as a drinking water supply in eastern Massachusetts (USA), with an overlying silt aquitard of 10 m thickness. Steady data and theory suggest a site-averaged k of 2.3 × 10–17 m2 for the aquitard, while the shutdown attenuation model generates local C V values that vary from 10–5 to 10–3 m2/s. The slug tests yield a local k variation (10–17–10–13 m2) that brackets the site-averaged value, and an α range of 10–9–10–7 Pa–1.
Résumé
Les aquifères semi-captifs constituent une ressource en eau protégée grâce à la présence d’une couche semi-perméable qui les recouvre. Cette étude développe une méthode pour estimer les propriétés hydrodynamiques de cette couche. Le suivi de points d’observation à proximité des ouvrages lors de pompages à débit constant, de leur arrêt, et des essais de type “slug” génèrent des données pour caractériser la couche semi-perméable. Un modèle en régime permanent est utilisé pour estimer, à l’échelle du site, une valeur moyenne de la perméabilité intrinsèque k de l’éponte semi-perméable, connaissant son épaisseur. Cette estimation peut alors être comparée avec des évaluations de k à partir d’essais d’injections (slug) conventionnels ou étendus. Un model d’atténuation de l’onde d’arrêt de pompage permet l’estimation d’une valeur locale du coefficient de consolidation C V , qui se combine à la valeur locale k pour déterminer la compressibilité α de la couche semi-perméable. La méthode est illustrée avec l’aquifère Fowl Meadow, une formation sédimentaire exploitée pour l’eau potable dans l’est du Massachusetts (USA), recouverte d’une éponte silteuse de 10 m d’épaisseur. Les données de régime permanent et les formules théoriques suggèrent une valeur moyenne de k de 2.3 × 10–17 m2 pour l’éponte, tandis que le modèle d’atténuation d’onde génère des valeurs locales de C V variant de 10–5 à 10–3 m2/s. L’interprétation des slug tests produit des valeurs locales de k (10–17–10–13 m2) qui encadrent la valeur moyenne et une valeur de α qui s’étend de 10–9–10–7 Pa–1.
Resumen
Los acuíferos filtrantes proporcionan agua potable confiable puesto que el acuífero está cubierto por un acuitardo, y este estudio desarrolla un método para estimar las propiedades hidráulicas del último depósito. Los bombeo estacionarios, el cierre de pozos de abastecimiento y las pruebas slug generan datos en grupos de pozos de monitoreo adyacentes que permiten caracterizar el acuitardo. Un modelo estacionario existente estima un valor local promedio de la permeabilidad de un acuitardo k si se conoce su espesor, y este promedio local puede ser ser comparado con las estimaciones locales de k obtenidas a partir de las pruebas slug convencionales y extendidas. Un modelo de atenuación por cierre estima un valor local del coeficiente de consolidación C V , que combina con el valor local k para especificar la comprensibilidad α del acuitardo. El método es ilustrado para el acuífero Fowl Meadow, un depósito estratificado de un derrubio glaciario usado como abastecimiento de agua potable en el este de Massachusetts (EEUU), con un acuitardo limoso suprayacente de 10-m de espesor. Los datos estacionarios y la teoría sugieren un promedio local k de 2.3 × 10–17 m2 para el acuitardo, mientras el modelo de atenuación de cierre genera valores locales de C V que varían de 10–5 a 10–3 m2/s. Las pruebas slug producen una variación local de k (10–17–10-13 m2) que incluye a los valores promedios del sitio, y un intervalo de α de 10–9–10–7 Pa–1.
摘要
越流含水层可提供受保护的饮用水, 因为其上覆有弱透水层。本研究提供了一个评价该弱透水层水力参数的方法。稳定流抽水、供水井关停, 及微水试验可在相邻观测井群中产生可用于刻画弱透水层参数的数据。现有的稳定流模型在厚度已知的前提下可以计算一个场地弱透水层渗透系数k的平均值, 该值可与传统的和扩展的微水试验所得到的k相比较。停井衰减模型估算了局部固结系数CV, 与k值综合便可得到弱透水层的压缩系数α。将此方法应用于Fowl Meadow含水层, 该含水层位于美国马萨诸塞州东部, 由层状冰碛沉积而成, 用作饮用水源, 上覆10m厚泥质弱透水层。根据稳定流数据和理论, 该弱透水层的平均渗透系数k为2.3 × 10–17 m2, 而停井衰减模型得到的固结系数CV为10–5 to 10–3 m2/s。微水试验得到的k (10–17–10–13 m2) 覆盖了该场地平均值, α范围为10–9–10–7 Pa–1。
Resumo
Os aquíferos semi-confinados fornecem água potável protegida, uma vez que o aquífero é sobreposto por um aquitardo. Este estudo desenvolve um método para estimar as propriedades hidráulicas deste último depósito. Bombeamentos a caudal constante, paragens do furo de abastecimento e ensaios slug produzem dados em clusters de furos de monitorização adjacentes que caracterizam o aquitardo. Um modelo estacionário existente estima um valor médio de permeabilidade k do aquitardo de um local se a sua espessura for conhecida, e esta estimativa média do local pode ser comparada com estimativas de k locais obtidas a partir de ensaios slug convencionais ou alargados. Um modelo de atenuação da paragem de furos estima um valor local do coeficiente de consolidação C V , que combina com o valor de k local para especificar a compressibilidade α do aquitardo. O método é demonstrado para o Aquífero de Fowl Meadow, um depósito estratificado utilizado como abastecimento de água potável em Massachusetts oriental (EUA), com um aquitardo siltítico sobrejacente com 10 m de espessura. Dados estacionários e a teoria sugerem um k médio para o local de 2.3 × 10–17 m2 para o aquitardo, enquanto o modelo de atenuação de paragem gera valores locais de C V que variam entre os 10–5 e os 10–3 m2/s. Os ensaios slug dão uma variação local de k (10–17–10–13 m2) que engloba o valor médio do local, e um intervalo de valores de α entre 10–9–10–7 Pa–1.














Similar content being viewed by others
References
Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. National Bureau of Standards, Washington, DC
Barker JA, Lawrence AR (2008) A simple model of leakage induced by deep pumping and its application to pollution beneath a city in Thailand. Hydrogeol J 16:407–417
Batu V (1998) Aquifer hydraulics. Wiley, New York
Beveridge GSG, Schechter RS (1970) Optimization: theory and practice. McGraw-Hill, New York
Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12:423–428
Conte E, Troncone A (2008) Soil layer response to pore pressure variations at the boundary. Geotechnique 58:37–44
Flint RF (1971) Glacial and quaternary geology. Wiley, New York
Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ
Hantush MS (1956) Analysis of data from pumping tests in leaky aquifers. Trans AGU 37:702–714
Hildebrand FB (1976) Advanced calculus for applications. Prentice-Hall, Englewood Cliffs, NJ
Jacob CE (1946) Radial flow to a leaky artesian aquifer. Trans AGU 27:198–208
Klinger AR (1996) Estimated short term yields of and quality of groundwater in stratified drift aquifer areas in the Neponset River basin, Massachusetts. Water Resour Invest Rep, US Geological Survey, Marlborough, MA
Neuman SP, Witherspoon PA (1969) Applicability of current theories of flow in leaky aquifers. Water Resour Res 5:817–829
Ostendorf DW, Kilbridge CJ (2009) Roadsalt aquifer impact case study: a mass balance. J New England Waterworks Assoc 123:238–251
Sandven R (2003) Geotechnical properties of a natural silt deposit obtained from field and laboratory tests. In: Tan et al (eds) Characterisation and engineering properties of natural soils, vol 2. Balkema, Rotterdam, The Netherlands, pp 1237–1276
Simonini P, Ricceri G, Cola S (2007) Geotechnical characterization and properties of Venice lagoon heterogeneous silts. In: Tan et al (eds) Characterisation and engineering properties of natural soils, vol 4. Balkema, Rotterdam, The Netherlands, pp 2289–2327
Spiegel MR (1965) Laplace transforms. McGraw-Hill, New York
Terzhagi K, Peck RB (1968) Soil mechanics in engineering practice. Wiley, New York
Thevanayagam S, Martin GR (2002) Liquifaction in silty soils-screening and remediation issues. Soil Dyn Earthquake Eng 22:1035–1042
Acknowledgements
The Massachusetts Highway Department funded this research under Interagency Service Agreement no. 56565 with the University of Massachusetts at Amherst. Sampling assistance was also provided by the Dedham-Westwood Water District. The views, opinions, and findings contained in this paper are those of the authors and do not necessarily reflect MassHighway official views or policies. This paper does not constitute a standard, specification, or regulation.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
- B :
-
Leakage factor [L]
- b :
-
Aquitard thickness [L]
- C V :
-
Coefficient of consolidation of aquitard [L2 T–1]
- F :
-
Leakage fraction
- g :
-
Gravitational acceleration [L T–2]
- H :
-
Shutdown induced hydraulic head disturbance in the aquitard [L]
- H O :
-
Shutdown induced hydraulic head disturbance in the aquifer [L]
- H OC :
-
Characteristic amplitude of disturbed hydraulic head in the aquifer [L]
- H W :
-
Disturbed water level in monitoring well [L]
- H WO :
-
Signed amplitude of slug test [L]
- H*:
-
Transformed, disturbed hydraulic head in the aquitard [L T]
- HO*:
-
Transformed, disturbed hydraulic head in the aquifer [L T]
- h :
-
Steady hydraulic head in the aquifer [L]
- h′ :
-
Seasonally varying hydraulic head [L]
- \( h_{\text{O}}^\prime \) :
-
Seasonally varying hydraulic head at time equals zero [L]
- h ∞ :
-
Steady hydraulic head in the aquitard, far from the contact surface [L]
- K N :
-
Modified Bessel function of the second kind, of order N
- k :
-
Aquitard permeability [L2]
- L :
-
Sand pack thickness [L]
- Q :
-
Discharge withdrawn by drinking water supply well [L3 T–1]
- r :
-
Radial distance from fully penetrating, drinking water supply well [L]
- r C :
-
Well casing radius [L]
- r E :
-
Bouwer and Rice (1976) equilibrium radius for slug test [L]
- r P :
-
Sand pack radius [L]
- s :
-
Laplace transform variable [T–1]
- T :
-
Leaky aquifer transmissivity [L2 T–1]
- t :
-
Time from onset of disturbance [T]
- t D :
-
Duration of supply well shutdown [T]
- z :
-
Elevation into aquitard [L]
- α :
-
Aquitard compressibility [M–1 L T2]
- β :
-
Fluid compressibility [M–1 L T2]
- ε :
-
Linearized leakage into the aquifer [L T–1]
- κ :
-
Signed seasonal rate of hydraulic head fluctuation [L T–1]
- λ :
-
Exponential decay constant of slug test [T–1]
- ρ :
-
Fluid density [M L–3]
- ν :
-
Fluid kinematic viscosity [L2 T–1]
Rights and permissions
About this article
Cite this article
Ostendorf, D.W., DeGroot, D.J., Judge, A.I. et al. Method to characterize aquitards above leaky aquifers with water supply wells. Hydrogeol J 18, 595–605 (2010). https://doi.org/10.1007/s10040-009-0563-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-009-0563-7


