Skip to main content

Advertisement

Log in

A hydrogeochemical survey of Kilimanjaro (Tanzania): implications for water sources and ages

Transport des bactéries dans un sédiment aquifère: expérimentation et modélisation

Transporte de bacterias en el sedimento de un acuífero: experimentos y modelado

Transporte de bactérias nos sedimentos de um aquífero: experiências e modelação

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Kilimanjaro, Tanzania, the highest mountain in Africa, has undergone extensive hydrologic changes over the past century in an area where water resources are critical. A hydrochemical and isotopic synoptic sampling program in January 2006 is used to characterize hydrogeology, hydrology, and water quality of the area. Samples were collected from the summit and southern side of Kilimanjaro and the Moshi region (Tanzania). Sample sources included four glaciers, seven groundwater wells, 12 rivers, 10 springs, precipitation, and a lake. Analyses included major ion chemistry, stable isotopes of water (18O and D); in addition, seven samples were analyzed for tritium. The samples generally have good water quality with the exception of three samples with elevated fluoride concentrations (>3 mg/L) and elevated nitrate concentrations (>2.5 mg/L NO3 as N). There is a strong elevation control on stable isotopes, with an apparent elevation effect of – 0.1 ‰ δ18O per 100 m rise in elevation (R 2 = 0.79). The results, including the tritium values, show that the hydrogeologic system is comprised of both local and regional flow systems, and that regional rivers are receiving significant inflow from shallow groundwater, and at very high elevations the hydrologic system is derived from groundwater, precipitation, and glacial melt water.

Résumé

Le Kilimandjaro en Tanzanie, plus haute montagne d’Afrique, a subi des changements hydrologiques ces derniers siècles dans une zone où la ressource en eau est critique. Une campagne d’échantillonnage pour analyses chimiques et isotopiques a été réalisée en janvier 2006 afin de caractériser l’hydrogéologie, l’hydrologie et la qualité des eaux de cette région. Les échantillons ont été collectés au sommet et sur le flanc sud du Kilimandjaro ainsi que dans la région de Moshi (Tanzanie). Les points échantillonnés inclus 4 glaciers, 7 forages, 12 rivières, 10 résurgences, les précipitations et un lac. Les analyses des ions majeurs et des isotopes stables de la molécule d’eau (18O et D) ont été réalisées sur tous les échantillons et le tritium a été mesuré sur 7 eaux. Les eaux sont en général de bonne qualité à l’exception de trois échantillons présentant de fortes concentrations en fluor (>3 mg/L) et nitrate (>2.5 mg/L NO3 - N). Les variations des isotopes stables sont contrôlées par l’effet d’altitude suivant un gradient de – 0.1 ‰ δ18O pour 100 m d’altitude (R 2 = 0.79). Les résultats, incluant les valeurs de tritium, montrent que le système hydrogéologique comporte un flux local et un flux régional. Les rivières ont un apport significatif d’eau souterraine. Pour les plus hautes altitudes, le système hydrologique comporte les eaux souterraines, des précipitations et la fonte des glaciers.

Resumen

El Kilimanjaro, Tanzania, la montaña más alta en África, ha experimentado cambios hidrológicos extensivos durante el siglo pasado en un área donde los recursos hídricos son críticos. En enero de 2006 se utilizó un programa de muestreo sinóptico hidroquímico e isotópico para caracterizar la hidrogeología, hidrología y calidad de agua del área. Las muestras fueron colectadas en la cima y en el lado lado sur del Kilimanjaro y de la región de Moshi (Tanzania). Las fuentes de muestreo incluyeron cuatro glaciares, siete pozos de aguas subterráneas, 12 ríos, 10 manantiales, la precipitación, y un lago. Los análisis incluyeron la los iones químicos mayoritarios, isótopos estables del agua (18O and D); además siete muestras fueron analizadas para tritio. Las muestras tienen generalmente buena calidad de agua con excepción de tres muestras con una elevada concentración de fluoruro (>3 mg/L) y elevada concentraciones de nitrato (>2.5 mg/L NO3 como N). Existe un control de la altitud sobre los isótopos estables, con un efecto de altitud aparente de – 0.1 ‰ δ18O por 100 m de aumento de la altitud (R 2 = 0.79). Los resultados, incluyendo los valores de tritio muestran que el sistema hidrogeológico está compuesto por un sistema de flujo regional y uno local; y que los ríos regionalmente están recibiendo una significativo ingreso del agua subterránea somero a partir de aguas subterráneas poco profundas, y a muy grandes altitudes en el sistema hidrológico es proveniente de aguas subterráneas, la precipitación, y el derretimiento de agua glacial.

Resumo

Kilimanjaro, na Tanzânia, é a mais alta montanha de África, e tem sofrido grandes mudanças ao longo do último século, numa área em que os recursos hídricos são críticos. Um programa sinóptico de amostragem hidroquímica e isotópica, realizado em Janeiro de 2006, foi usado para caracterizar a hidrogeologia, hidrologia e a qualidade da água da região. As amostras foram recolhidas no cume, no lado sul do Kilimanjaro e na região de Moshi (Tanzânia). A origem das amostras incluiu quatro glaciares, sete furos de água subterrânea, 12 rios, 10 nascentes, água de precipitação e um lago. As análises incluíram a química dos iões principais e isótopos estáveis da água (18O e D); para além disso, foi analisado o trítio em sete amostras. As amostras apresentaram, no geral, água de boa qualidade, com excepção de três amostras com concentração elevada de flúor (>3 mg/L) e de nitrato (>2.5 mg/L NO3 como N). Há um forte controlo da altitude nos isótopos estáveis, com um efeito aparente da altitude de – 0.1 ‰ δ18O por 100 m de aumento da cota (R 2 = 0.79). Os resultados, incluindo os valores de trítio, evidenciam que o sistema hidrológico é formado por sistemas de fluxo tanto locais como regionais, que os rios da região recebem descarga significativa das águas subterrâneas pouco profundas e que em regiões de cota muito elevada o sistema hidrológico deriva da água subterrânea, da precipitação e da água proveniente do degelo dos glaciares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baraer M, McKenzie JM, Mark BG, Bury J, Knox S (2009) Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru). Adv Geosci 7:1–9

    Google Scholar 

  • Christophersen N, Hooper RP (1992) Multivariate-analysis of stream water chemical-data: the use of principal components-analysis for the end-member mixing problem. Water Resour Res 28:99–107

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Cullen NJ, Mölg T, Kaser G, Hussein K, Steffen K, Hardy DR (2006) Kilimanjaro glaciers: recent areal glacier extent from satellite data and new interpretation of observed 20th century retreat rates. Geophys Res Lett 33, L16502. doi:10.1029/2006GL027084

    Google Scholar 

  • Dawson JB (1992) Neogene tectonics and volcanicity in the North Tanzania sector of the Gregory Rift Valley: contrasts with the Kenya sector. Tectonophysics 204:81–83

    Article  Google Scholar 

  • Doney SC, Glover DM, Jenkins WJ (1992) A model function of the global bomb tritium distribution in precipitation, 1960–1986. J Geophys Res 97:5481–5492

    Article  Google Scholar 

  • Downie C (1964) Glaciations of Mount Kilimanjaro, northeast Tanganyika. GSA Bull 75:1–16

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Duane WJ, Pepin NC, Losleben ML, Hardy DR (2008) General characteristics of temperature and humidity variability on Kilimanjaro, Tanzania. Arct Antarct Alp Res 40:323–334

    Article  Google Scholar 

  • Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol J 13:436–450

    Article  Google Scholar 

  • Gleick PH (2006) The world’s water 2006–2007. Island, Washington, DC

    Google Scholar 

  • Grove A (1993) Water use by the Chagga on Kilimanjaro. Afr Aff 92:431–448

    Google Scholar 

  • Hastenrath S (1984) The glaciers of equatorial East Africa. Riedel, Dordrecht, The Netherlands

    Google Scholar 

  • Hastenrath S (2006) Diagnosing the decaying glaciers of equatorial East Africa. Meteorol Z 15:265–271

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Suppl Pap 2254, 263 pp

  • Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184:27–42

    Article  Google Scholar 

  • IAEA/WMO (2007) Global network of isotopes in precipitation. In: The GNIP Database. http://isohis.iaea.org. Cited November 2007

  • Kaser G, Cogley JG, Dyurgerov MB, Meier MF, Ohmura A (2006) Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004. Geophys Res Lett 33, L19501. doi:10.1029/2006GL027511

    Google Scholar 

  • Lein H (2004) Managing the water of Kilimanjaro: irrigation, peasants, and hydropower development. GeoJournal 61:155–162

    Article  Google Scholar 

  • Little MG, Lee CA (2006) On the formation of an inverted weathering profile on Mount Kilimanjaro, Tanzania: buried paleosol or groundwater weathering? Chem Geol 235:205–221

    Article  Google Scholar 

  • Mark BG, McKenzie JM (2007) Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environ Sci Technol 41:6955–6960

    Article  Google Scholar 

  • Mark BG, Osmaston H (2008) Quaternary glaciations in Africa: key chronologies and climatic implications. J Quat Sci 23:589–608

    Article  Google Scholar 

  • Mark BG, McKenzie JM, Gómez J (2005) Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. J Hydrol Sci 50:975–987

    Article  Google Scholar 

  • McKenzie JM, Siegel DI, Patterson W, McKenzie DJ (2001) A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection. Hydrogeol J 9:265–272

    Article  Google Scholar 

  • Mjengera H, Mkongo G (2003) Appropriate deflouridation technology for use in flourotic areas in Tanzania. Phys Chem Earth 28(20–27):1097–1104

    Google Scholar 

  • Mölg T, Hardy DR, Kaser G (2003) Solar-radiation-maintained glacier recession on Kilimanjaro drawn from combined ice-radiation geometry modeling. J Geophys Res 108(D23):ACL8.1–ACL8.10

    Article  Google Scholar 

  • Mölg T, Hardy D, Cullen NJ, Kaser G (2007) Tropical glaciers, climate change and society: focus on Kilimanjaro (East Africa). In: Orlove B, Wiegandt E, Luckman BH (eds) The darkening peaks: glacial retreat in scientific and social context. University of California Press, Berkeley, CA

    Google Scholar 

  • Mul ML, Mutiibwa RK, Foppen JWA et al (2007) Identification of groundwater flow systems using geological mapping and chemical spring analysis in South Pare Mountains, Tanzania. Phys Chem Earth 32:1015–1022

    Google Scholar 

  • Mul ML, Mutiibwa RK, Uhlenbrook S, Savenije HHG (2008) Hydrograph separation using hydrochemical tracers in the Makanya catchment, Tanzania. Phys Chem Earth 33:151–156

    Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–923

    Google Scholar 

  • Røhr PC, Killingtveit Å (2003) Rainfall distribution on the slopes of Mt Kilimanjaro. J Hydrol Sci 48:65–77

    Article  Google Scholar 

  • Schlüter T (2006) Geological atlas of Africa: with notes on stratigraphy, tectonics, economic geology, geohazards, geosites and geoscientific education of each country. Springer, Berlin

    Google Scholar 

  • Siegenthaler U, Oeschger H, Schotterer U, Hanni K (1975) Conversion of water to a counting gas for low-level tritium measurements by means of aluminium carbide. Int J Appl Radiat Isot 26:459–464

    Article  Google Scholar 

  • Taylor RG, Mileham L, Tindimugaya C, Majugu A, Muwanga A, Nakileza (2006) Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys Res Lett 33, L10402. doi:10.1029/2006GL025962

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME, Henderson KA, Brecher HH, Zagorodnov VS, Mashiotta TA, Lin PN, Mikhalenko VN, Hardy DR, Beer J (2002) Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–593

    Article  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Brecher H et al (2006) Abrupt tropical climate change: past and present. Proc Natl Acad Sci USA 103:10536–10543

    Article  Google Scholar 

  • WHO (2008) Guidelines for drinking-water quality: incorporating first and second addenda to third edition—Vol 1, Recommendations. WHO, Geneva. http://www.who.int/water_sanitation_health/dwq/gdwq3rev/en/index.html. Cited April 2008

Download references

Acknowledgements

The authors thank the Ohio State University Department of Geography, Byrd Polar Research Center, McGill University, E. Mosley-Thompson, S. Lee, and K. Welch for their assistance in data collection and analysis. The research was supported by a grant from the Climate, Water & Carbon TIE at The Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M. Mckenzie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mckenzie, J.M., Mark, B.G., Thompson, L.G. et al. A hydrogeochemical survey of Kilimanjaro (Tanzania): implications for water sources and ages. Hydrogeol J 18, 985–995 (2010). https://doi.org/10.1007/s10040-009-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0558-4

Keywords

Navigation