Advertisement

Hydrogeology Journal

, Volume 18, Issue 4, pp 959–972 | Cite as

Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India

  • Bridget R. Scanlon
  • Abhijit Mukherjee
  • John Gates
  • Robert C. Reedy
  • Amarendra K. Sinha
Paper

Abstract

Water and nutrient availability for crop production are critical issues in (semi)arid regions. Unsaturated-zone Cl tracer data and nutrient (NO3 and PO4) concentrations were used to quantify recharge rates using the Cl mass balance approach and nutrient availability in the Thar Desert, Rajasthan, India. Soil cores were collected in dune/interdune settings in the arid Thar Desert (near Jaisalmer) and in rain-fed (nonirrigated) and irrigated cropland in the semiarid desert margin (near Jaipur). Recharge rates were also simulated using unsaturated zone modeling. Recharge rates in sparsely vegetated dune/interdune settings in the Jaisalmer study area are 2.7–5.6 mm/year (2–3% of precipitation, 165 mm/year). In contrast, recharge rates in rain-fed agriculture in the Jaipur study area are 61–94 mm/year (10–16% of precipitation, 600 mm/year). Minimum recharge rates under current freshwater irrigated sites are 50–120 mm/year (8–20% of precipitation). Nitrate concentrations are low at most sites. Similarity in recharge rates based on SO4 with those based on Cl is attributed to a meteoric origin of SO4 and generally conservative chemical behavior in these sandy soils. Modeling results increased confidence in tracer-based recharge estimates. Recharge rates under rain-fed agriculture indicate that irrigation of 20–40% of cultivated land with 300 mm/year should be sustainable.

Keywords

India Groundwater recharge/water budget Nutrients Land use Sustainability 

Recharge d’un aquifère dans des systèmes naturels dunaires et des ecosystems agricoles dans la region désertique du Thar, au Rajasthan en Inde

Résumé

L’accessibilité à l’eau et aux nutriments pour la production agricoles est une question critiques dans les regions en climat aride à semi-aride. Des données des chlorures en tant que traceur de la zone non saturée ainsi que les concentrations des nutriments (NO3 et PO4) ont été utilisées pour quantifier les vitesses de recharge à partir de l’approche de l’équilibre des masses des chlorures et de l’accessibilité des nutriments dans le désert de Thar, dans le Rajhasthan en Inde. Des échantillons carottés de sol ont été prélevés dans les dunes et les inter-dunes du désert aride de Thar (près de Jaisalmer) ainsi qu’au niveau de parcelles agricoles alimentées par les eaux pluviales et des parcelles agricoles irriguées en bordure du désert semi-aride à proximité de Jaipur. Les vitesses de recharge ont été simulées, en ayant recours à un modèle pour la zone non saturée. Les vitesses de recharges pour des sites caractérisés par une végétation éparse et de milieu dunaire et inter-dunaire dans la zone d’étude de Jaisalmer sont de 2.7 à 5.6 mm /an (2–3% des précipitations, soit 165 mm/an). Par opposition, les vitesses de recharge concernant des parcelles agricoles alimentées par les eaux pluviales de la zone d’étude de Jaipur sont de 61 à 94 mm/an (10–16% des précipitations, soit 600 mm/an). Les vitesses de recharge minimums pour des parcelles irriguées sont de 50 à 120 mm/an (3 à 16% des précipitations). Les concentrations en nitrates sont faibles sur la plupart des sites. La similitude des vitesses de recharge basées sur le SO4 avec celles basées sur les chlorures est à mettre en relation avec le SO4 d’origine météorique et son caractère généralement conservatif du point de vue chimique dans des sols sableux. Les résultats de la modélisation contribuent à augmenter la confiance dans les estimations de la recharge faites à partir des traceurs. Les vitesses de recharge pour de l’agriculture pluviale indiquent que l’irrigation de 20 à 30% des terres cultivées avec 300 mm/an devraient être durables.

Recarga de aguas subterráneas en sistemas de dunas naturales y ecosistemas agrícolas en la región del desierto de Thar, Rajasthan, India

Resumen

La disponibilidad de agua y nutrientes para los cultivos son cuestiones críticas en regiones áridas y semiáridas. Se usaron datos de trazadores de Cl en la zona no saturada y de las concentraciones de nutrientes (NO3 and PO4) para cuantificar el índice de recarga usando el método del balance de masas de Cl y la disponibilidad de nutrientes en el desierto de Thar, Rajasthan, India. Se recolectaron los testigos de suelos en los ambientes de duna/interduna en el desierto árido de Thar (próximo a Jaisalmer) y en áreas cultivadas alimentadas por las lluvias (no irrigada) e irrigadas en el borde del desierto semiárido (próximo a Jaipur). Los índices de la recarga fueron también simulados usando un modelado de la zona no saturada. Los índices de recarga en los ambientes de duna/interduna escasamente vegetados en el área de estudio de Jaisalmer son 2.7–5.6 mm/año (2–3% de la precipitación, 165 mm/año). En contraste, los índices de recarga en la agricultura alimentada por las lluvias en el área de estudio de Jaipur son 61–94 mm/año (10–16% de la precipitación, 600 mm/año). Los menores índices de recarga en los sitios actualmente irrigados por agua dulce son 50–120 mm/año (3–16% de la precipitación). Las concentraciones de nitrato son bajas en la mayoría de los sitios. La similitud en los índices de recarga basados en SO4 con los basados en Cl se atribuye al origen meteórico de SO4 y un comportamiento químico generalmente conservativo en estos suelos arenosos. Los resultados del modelado incrementaron la confianza en estimaciones de recarga basadas en trazadores. Los índices de recarga para agricultura alimentada por las lluvias indican que esta irrigación de 20–30% en tierras cultivadas con 300 mm/año debería ser sustentable.

印度拉贾斯坦邦塔尔沙漠地区天然沙丘系统和农业生态系统的地下水补给

摘要

在 (半) 干旱地区, 水和营养物质的可获性是作物生产的关键因素。本文利用非饱和带氯示踪和营养物 (NO3 和 PO4) 浓度数据, 采用氯质量平衡方法和根据营养物可获性, 量化了印度拉贾斯坦邦塔尔沙漠地区的补给速率。在干旱的塔尔沙漠 (邻近Jaisalmer) 、雨养 (非灌溉型) 以及半干旱沙漠边缘 (邻近Jaipur) 的灌溉型耕地的沙丘和丘间地块采集了土壤芯。补给速率也通过非饱和带模型进行了模拟。在Jaisalmer研究区植被稀疏的沙丘和丘间地块, 补给速率为2.7–5.6mm/yr (仅为降雨量165mm/yr的2-3%) 。而在Jaipur研究区雨水补给的农业区, 补给速率为61–94mm/yr (为降雨量600mm/yr的10-16%) 。目前淡水灌区的最小补给速率为50-120mm/yr (降雨量的3-16%) 。大多数地区硝酸盐的浓度很低。基于SO4离子和Cl离子的补给速率之间的相似性是由于SO4离子起源于大气降水且其在这些砂质土壤中的化学保守性。模拟结果进一步说明了基于示踪剂的补给速率的估计值的合理性。雨养农业模式下的补给速率表明, 如果每年对20-30%的耕地实施300mm/yr的灌溉应该是可持续的。

Recarga de água subterrânea em sistemas de dunas naturais e em ecossistemas agrícolas da região do Deserto de Thar, Rajastão, Índia

Resumo

A disponibilidade de água e nutrientes para a produção agrícola são factores críticos em regiões (semi-) áridas. Utilizaram-se dados sobre traçadores de Cl na zona não saturada e sobre a concentração de nutrientes (NO3 e PO4) para quantificar a recarga utilizando o método do balanço de massa de Cl e a disponibilidade de nutrientes no Deserto de Thar, Rajastão, Índia. Recolheram-se amostras de solo nos ambientes dunares/interdunares do deserto árido de Thar (próximo de Jaisalmer), na região agrícola alimentada pela precipitação (não irrigada) e na zona agrícola irrigada nas margens semi-áridas do deserto (próximo de Jaipur). A recarga foi ainda simulada através de modelação da zona não-saturada. A recarga nos ambientes dunares/interdunares escassamente vegetados na área de estudo de Jaisalmer é de 2.7–5.6 mm/ano (2–3% da precipitação, 165 mm/ano). Em contraste, a recarga nas zonas alimentadas por água de precipitação na área de estudo de Jaipur é de 61–94 mm/ano (10–16% da precipitação, 600 mm/ano). Valores mínimos de recarga nos locais actualmente sob irrigação são de 50–120 mm/ano (3–16% da precipitação). A concentração de nitratos é baixa na maior parte dos locais. A semelhança entre a recarga estimada com base na concentração de SO4 e a estimada com base nos valores de Cl é atribuída à origem meteórica do SO4 e ao seu comportamento quimicamente conservativo nestes solos arenosos. Os resultados da modelação aumentaram a confiança nos valores de recarga estimados através dos traçadores. A recarga nas zonas agrícolas alimentadas por água de precipitação indica que a irrigação de 20–30% das zonas cultivadas com 300 mm/ano deverá ser sustentável.

Notes

Acknowledgments

We would like to acknowledge the Jackson School of Geosciences for financial support for conducting this study. We would also like to thank Prof. A. L. Ramanathan (Jawharlal Nehru University, India) for guidance in field selection, Mr. P. Kumar (Jawharlal Nehru University) for assisting with fieldwork in 2007, Prof. F. Perez (Dept. of Geography and the Environment, Univ. of Texas at Austin, USA) for sample shipment, S. Davidson (MSc. student, Jackson School of Geosciences, USA) for laboratory work, L. Longuevergne for obtaining GLDAS forcing data (Bureau of Economic Geology, USA), and local residents for access to drilling sites. Publication authorized by the Director, Bureau of Economic Geology.

Supplementary material

10040_2009_555_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1185 kb)

References

  1. Allison GB, Hughes MW (1983) The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region. J Hydrol 60:157–173CrossRefGoogle Scholar
  2. Asner GP, Archer S, Hughes RF, Ansley RJ, Wessman CA (2003) Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Glob Chang Biol 9:316–335CrossRefGoogle Scholar
  3. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345CrossRefGoogle Scholar
  4. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769CrossRefGoogle Scholar
  5. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) The physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  6. Cook PG, Herczeg A (2000) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, The Netherlands, 529 ppGoogle Scholar
  7. Deans JD, Edmunds WM, Lindley DK, Gaye CB, Dreyfus B, Nizinski JJ, Neyra M, Ingleby K, Munro RC (2005) Nitrogen in interstitial waters in the Sahel: natural baseline, pollutant or resource? Plant Soil 271:47–62CrossRefGoogle Scholar
  8. Deb Roy A, Shah T (2003) Socio-ecology of groundwater irrigation in India. In: Llamas R, Custodio E (eds) Intensive use of groundwater: challenges and opportunities. Swets and Zetlinger, Lisse, The Netherlands, pp 307–336Google Scholar
  9. Devlin JF, Sophocleous M (2005) The persistence of the water budget myth and its relationship to sustainability. Hydrogeol J 13:549–554. doi: 10.1007/s10040-004-0354-0 CrossRefGoogle Scholar
  10. FAO (2008) Aquastat. FAO, Rome. http://www.fao.org/nr/water/aquastat/main/index.stm. Cited June 2008
  11. Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Resear 45. doi: W00a16 10.1029/2007wr006785
  12. Fayer MJ, Gee GW, Rockhold ML, Freshley MD, Walters TB (1996) Estimating recharge rates for a groundwater model using a GIS. J Environ Qual 25:510–518Google Scholar
  13. Feddes RA, Kowalik PJ, Zaradny H (1978) Simulation of field water use and crop yield. Simulation Monographs. PUDOC, Wageningen, The Netherlands, 189 ppGoogle Scholar
  14. Fischer G, Shah M, van Velthuizen H (2002) Climate change and agricultural vulnerability. Intl. Inst. Appl. Syst. Anal. Contribution to World Summit on Sustainable Development, Johannesburg, South Africa, 26 August to 4 September 2002, 151 ppGoogle Scholar
  15. Gates JB, Edmunds WM, Ma J, Sheppard PR (2008) A 700-year history of groundwater recharge in the drylands of NW China. Holocene 18(7):1045–1054CrossRefGoogle Scholar
  16. Gaye CB, Edmunds WM (1996) Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal. Environ Geol 27:246–251CrossRefGoogle Scholar
  17. Gupta SK, Deshpande RD (2004) Water for India in 2050: first-order assessment of available options. Curr Sci 86:1216–1224Google Scholar
  18. Jain SK, Agarwal PK, Singh VP (2007) Hydrology and water resources of India. Springer, Amsterdam, 1258 ppGoogle Scholar
  19. Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41, W06010. doi: 06010.01029/02004WR003841 CrossRefGoogle Scholar
  20. Kumar R, Singh RD, Sharma KD (2005) Water resources of India. Curr Sci 89:794–811Google Scholar
  21. McMahon PB, Dennehy KF, Bruce BW, Bohlke JK, Michel RL, Gurdak JJ, Hurlbut DB (2006) Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resour Res 42, W034013Google Scholar
  22. Mukhopadhyay B, Datar SV, Srivastava HN (1992) Precipitation chemistry over the India region. Mausam 43:249–258Google Scholar
  23. Phillips FM (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci Soc Am J 58:14–24CrossRefGoogle Scholar
  24. Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299CrossRefGoogle Scholar
  25. Postel SL (1997) Last oasis: facing water scarcity, 2nd edn. Norton, New YorkGoogle Scholar
  26. Rangarajan R, Athavale RN (2000) Annual replenishable ground water potential of India: an estimate based on injected tritium studies. J Hydrol 234:38–53CrossRefGoogle Scholar
  27. Rockstrom J, deRouw A (1997) Water, nutrients and slope position in on-farm pearl millet cultivation in the Sahel. Plant Soil 195:311–327CrossRefGoogle Scholar
  28. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteor Soc 85:381–394CrossRefGoogle Scholar
  29. Sahai B, Rajawat AS, Bahuguna IM, Arya AS, Sharma AK, Sharma DC, Porwal CP, Chakravarty SK, Rathore DS (1993) Hydrogeomorphological mapping of Jaisalmer and Bikaner districts (Rajasthan) at 1:1–50,000 scale using satellite data. J Arid Environ 25:163–172CrossRefGoogle Scholar
  30. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  31. Scanlon BR, Keese K, Reedy RC, Simunek J, Andraski BJ (2003) Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resour Res 39, W01179Google Scholar
  32. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern USA. Glob Chang Biol 11:1577–1593CrossRefGoogle Scholar
  33. Scanlon BR, Reedy RC, Tachovsky JA (2007a) Semiarid unsaturated zone chloride profiles: archives of past land use change impacts on water resources in the southern High Plains, United States. Water Resour Res 43, W06423Google Scholar
  34. Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007b) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43, W03437Google Scholar
  35. Scanlon BR, Reedy RC, Bronson KF (2008) Impacts of land use change on nitrogen cycling archived in semiarid unsaturated zone nitrate profiles, southern High Plains, Texas. Environ Sci Technol 42:7566–7572. doi: 10.1021/es800792w CrossRefGoogle Scholar
  36. Scanlon BR, Stonestrom DA, Reedy RC, Leaney FW, Gates J, Cresswell RG (2009) Inventories and mobilization of unsaturated zone sulfate, fluoride, and chloride related to land use change in semiarid regions, southwestern United States and Australia. Water Resour Res 45, W00A18. doi: 10.1029/2008wr006963
  37. Schimel D, Stillwell MA, Woodmansee RG (1985) Biogeochemistry of C, N, and P in a soil Catena of the Shortgrass Steppe. Ecology 66:276–282CrossRefGoogle Scholar
  38. Sharma D (1966) Rajasthan through the ages: a comprehensive and authentic history of Rajasthan, vol 1. Rajasthan State Archives, Government of Rajasthan, Rajasthan, IndiaGoogle Scholar
  39. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25:11–32CrossRefGoogle Scholar
  40. Siebert S, Doll P, Hoogeveen J, Faures JM, Frenken K, Feick S (2005) Development and validation of the global map of irrigation areas. Hydrol Earth Syst Sci 9:535–547CrossRefGoogle Scholar
  41. Simunek J, Van Genuchten MT, Sejna M (2005) The hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version 3.0, HYDRUS Software Series 1, Dept Env Sci, Univ California, Riverside, CA, 270 ppGoogle Scholar
  42. SRSA (1999) Ground water atlas of Rajasthan. State Remote Sensing Application Centre, Department of Science and Technology, Government of Rajasthan, Rajasthan, India, 370 ppGoogle Scholar
  43. Sukhija BS, Shah CR (1976) Conformity of groundwater recharge rate by tritium method and mathematical modelling. J Hydrol 30:167–178CrossRefGoogle Scholar
  44. UN-DESA-PD (2002) World population prospects: 2002. United Nations Department of Economic and Social Affairs-Population Division, UN, New YorkGoogle Scholar
  45. UNEP (1991) Status of desertification and implementation of the United Nations Plan of Action to Combat Desertification. Report of the Executive Director to the Governing Council, Third Special Session, UNEP, Nairobi, KenyaGoogle Scholar
  46. Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers, 4th edn. Macmillan, New YorkGoogle Scholar
  47. Vose RS, Peterson TC, Hulme M (1998) The global historical climatology network precipitation database. Proc of the Ninth Symposium on Global Change Studies, January 1998, Phoenix, AZGoogle Scholar
  48. Walvoord MA, Phillips FM, Stonestrom DA, Evans EC, Hartsough PC, Newman BD, Striegl RG (2003) A reservoir of nitrate beneath desert soils. Science 302:5647CrossRefGoogle Scholar
  49. Wang XP, Brown-Mitic CM, Kang ES, Zhang JG, Li XR (2004) Evapotranspiration of Caragana korshinskii communities in a revegetated desert area: Tengger Desert, China. Hydrol Process 18:3293–3303CrossRefGoogle Scholar
  50. Wasson RJ, Rajaguru SN, Misra VN, Agrawal DP, Dhir RP, Singhvi AK, Kameswara Rao K (1983) Geomorphology, late Quaternary stratigraphy and palaeoclimatology of the Thar dune field. Zeitschr Geomorphog (Supplementband) 45:117–151Google Scholar
  51. White MA, Asner GP, Nemani RR, Privette JL, Running SW (2000) Measuring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry methods. Remote Sens Environ 74:45–57CrossRefGoogle Scholar
  52. Zeng XB (2001) Global vegetation root distribution for land modeling. J Hydrometeorol 2:525–530CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Bridget R. Scanlon
    • 1
  • Abhijit Mukherjee
    • 1
    • 2
  • John Gates
    • 1
  • Robert C. Reedy
    • 1
  • Amarendra K. Sinha
    • 3
  1. 1.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Alberta Geological SurveyEdmontonCanada
  3. 3.Department of GeologyUniversity of RajasthanJaipurIndia

Personalised recommendations