Skip to main content
Log in

Postaudit evaluation of conceptual model uncertainty for a glacial aquifer groundwater flow and contaminant transport model

Evaluation de l’incertitude d’un modèle conceptual des écouments d’un aquifère de sédiments glaciaires et d’un modèle de transport de contaminant suite à un audit

Evaluación postauditoría de la incerteza de un modelo conceptual para un modelo de flujo de agua subterránea y transporte de contaminante de un acuífero glacial

冰川堆积含水层地下水流和污染物运移模拟中概念模型不确定性的后评价

Avaliação a posteriori da incerteza do modelo conceptual para o fluxo de água subterrânea e do modelo de transporte de contaminantes num aquífero glacial

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Numerical groundwater flow and contaminant transport modeling incorporating three alternative conceptual models was conducted in 2005 to assess remedial actions and predict contaminant concentrations in an unconfined glacial aquifer located in Milford, Michigan, USA. Three alternative conceptual models were constructed and independently calibrated to evaluate uncertainty in the geometry of an aquitard underlying the aquifer and the extent to which infiltration from two manmade surface water bodies influenced the groundwater flow field. Contaminant transport for benzene, cis-DCE, and MTBE was modeled for a 5-year period that included a 2-year history match from July 2003 to May 2005 and predictions for a 3-year period ending in July 2008. A postaudit of model performance indicates that predictions for pumping wells, which integrated the transport signal across multiple model layers, were reliable but unable to differentiate between alternative conceptual model responses. In contrast, predictions for individual monitoring wells with limited screened intervals were less consistent, but held promise for evaluating alternative hydrogeologic models. Results of this study suggest that model conceptualization can have important practical implications for the delineation of contaminant transport pathways using monitoring wells, but may exert less influence on integrated predictions for pumping wells screened over multiple numerical model layers.

Resume

La modélisation numérique des écoulements et du transport de contaminant comprenant trois modèles conceptuels a été réalisée en 2005 afin d’évaluer des actions de remédiation et de prédire les concentrations de contaminant dans un aquifère libre en contexte sédimentaire glaciaire, à Milford dans l’état du Michigan aux Etats Unis d’Amérique. Les trois modèles conceptuels ont été élaborés et calibrés de manière indépendante afin d’évaluer les incertitudes concernant la géométrie de l’aquitard sous jacent et de définir l’extension des infiltrations issues de deux plans d’eau artificiels et leur influence sur l’organisation des eaux souterraines. Le transport de contaminants tels que le benzène, le cis-DCE (cis-1,2-dichloro-ethène) et le MTBE (méthyle-tert-butyle-éther) a été modélisé pour une période de 5 ans comprenant une comparaison avec un historique de 2 ans (Juillet 2003 à Mai 2005) et des prévisions pour une période de trois ans s’achevant en juillet 2008. Un audit de la performance des modèles indique que les prévisions pour les pompages aux puits, qui intégraient le signal du transport au sein de modèles multicouche étaient fiables, mais incapables de différencier les réponses des différents modèles conceptuels. Par opposition, les prévisions au niveau des piézomètres pris individuellement avec des intervalles de crépines limitées étaient moins cohérentes, mais semblent prometteuses pour l’évaluation des différentes options de modélisation. Les résultats de cette étude suggèrent que la conceptualisation d’un modèle peut avoir d’importantes implications pratiques pour la délimitation des lignes d’écoulement des contaminants transportés en ayant recours à des forages d’observation, mais exercent moins d’influence sur les prévisions intégrées des modèles multi-couches pour les puits de pompage crépinés.

Resumen

En 2005 se llevó a cabo un modelado numérico de flujo subterráneo y transporte de contaminantes incorporando tres modelos conceptuales alternativos para evaluar las acciones de remediación y predecir las concentraciones de contaminantes en un acuífero glacial no confinado localizado en Milford, Michigan, EEUU. Tres modelos conceptuales alternativos fueron construidos y calibrados independientemente para evaluar incertidumbres en la geometría de un acuitardo subyacente al acuífero y el grado en que la infiltración de dos cuerpos de aguas superficiales artificiales influyó en el campo de flujo de aguas subterráneas. Se modeló el transporte de contaminantes para benceno, cis-DCE, y MTBE para un período de 5 años que incluyó una comparación histórica de 2 años a partir de Julio de 2003 hasta mayo de 2005 y las predicciones para un período de 3 años finalizando en julio de 2008. Una postauditoría del rendimiento del modelo indica que las predicciones para pozos de bombeo, que integraron a las señales de transporte a través de un modelo de múltiples capas, fueron confiables pero incapaces para diferenciar entre las respuestas de los modelos conceptuales alternativos. En contraste, las predicciones para pozos de monitoreo individuales con intervalos limitados de filtros fueron menos consistentes, pero resultaron prometedores para evaluar modelos hidrogeológicos alternativos. Los resultados de este estudio sugieren que el modelo conceptual puede tener importantes implicancias prácticas para delinear las trayectorias de transporte de contaminantes usando pozos de monitoreo, pero pueden ejercer menos influencia sobre predicciones integradas para pozos de bombeo con filtros en modelos numéricos de múltiples capas.

摘要

2005年,联合三个比对概念模型对地下水流和污染物运移进行了数值模拟, 用以评价美国密歇根州Milford一个潜水冰成含水层的修复效果并预测其中的污染物浓度。三个比对概念模型经分别校正, 以评价含水层下伏隔水层的几何形态和二个人工地表水体的入渗对地下水流场的影响程度的不确定性。 对苯、cis-DCE、MTBE进行了五年的污染物运移模拟, 包括两年 (2003年7月至2005年5月) 的历史拟合和三年 (至2008年7月) 的预测。模型性能的后评价表明, 对综合多个模拟层运移信号的抽水井的预测是可靠的, 但是无法区分各比对概念模型的响应。相反, 对局部取水的个别监测井的预测很少一致, 但这为比对水文地质模型的评价提供了可能。本次研究结果表明, 模型概化对利用监测井描绘污染物运移路径具有重要的实际意义, 但对从多层取水井的数值模拟综合预测影响较小。

Resumo

Em 2005 foram desenvolvidas três alternativas de modelos conceptuais de fluxo de água subterrânea e de transporte de contaminantes, com o objectivo de estabelecer acções de remediação e prever a concentração de contaminantes num aquífero glacial não confinado localizado em Milford, Michigan, EUA. Três modelos conceptuais foram construídos e calibrados independentemente, para avaliar a incerteza da geometria de um aquitardo subjacente ao aquífero e avaliar a extensão em que a infiltração a partir de duas massas de água superficiais, construídas, influenciou o fluxo da água subterrânea. Foi modelado o transporte de contaminantes para benzeno, cis-DCE, e MTBE, para um período de 5 anos, que incluiu a evolução histórica ao longo de 2 anos, de Julho de 2003 a Maio de 2005 e as previsões para um período de 3 anos, terminando em Julho de 2008. Uma verificação posterior do desempenho do modelo indicou que as previsões para furos de bombagem, que integravam o marcador de transporte através de múltiplas camadas do modelo, eram fiáveis, mas incapazes de diferenciar entre respostas alternativas do modelo conceptual. Pelo contrário, as previsões para furos individuais de monitorização com intervalos de tubos-ralo limitados eram menos consistentes, mas são promissoras para avaliar modelos hidrogeológicos alternativos. Os resultados deste estudo sugerem que a conceptualização do modelo pode ter implicações práticas importantes para a delineação dos percursos de transporte de contaminantes usando furos de monitorização, mas podem exercer menos influência em previsões integradas para furos de bombagem com tubos-ralo situados ao longo de múltiplas camadas objecto de modelos numéricos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson MP, Woessner WW (1992) The role of the postaudit in model validation. Adv Water Resour 15:167–173

    Article  Google Scholar 

  • Bredehoeft J (2005) The conceptualization model problem: surprise. Hydrogeol J 13:37–46. doi:10.1007/s10040-004-0430-5

    Article  Google Scholar 

  • DLZ (2002) Groundwater modeling report: former Coe’s cleaners site, Milford, Michigan, Lansing, Michigan, Project No. 0141-5649-00, March 2002

  • Dubus IG, Brown CD, Beulke S (2003) Sources of uncertainty in pesticide fate modeling. Sci Total Environ 317:53–72

    Article  Google Scholar 

  • Guiger W, Franz T (1995) User’s manual for Visual MODFLOW. Waterloo Hydrogeologic, Waterloo, ON

    Google Scholar 

  • Hands (2005a) Groundwater flow and contaminant transport modeling: former Coe’s cleaners site, Milford, Michigan. Project No. 10295, 7 September 2005, Hands, Detroit, MI

  • Hands (2005b) Monitoring network performance evaluation: former Coe’s cleaning site, Milford, Michigan. Project No. 10295, 29 November 2005, Hands, Detroit, MI

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The US Geological Survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 92

  • Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models. Hydrogeol J 11:536–548. doi:10.1007/s10040-003-0276-2

    Article  Google Scholar 

  • Hojberg AL, Refsgarrd JC (2005) Model uncertainty: parameter uncertainty versus conceptual models. Water Sci Technol 52:177–186

    Google Scholar 

  • Journel AG (1997) The abuse of principles in model building and the quest for objectivity. In: Baafi EY, Schofield NA (eds) Geostatistics Wollongong ’96. Kluwer, Dordrecht, The Netherlands, pp 3–14

    Google Scholar 

  • Konikow LF (1986) Predictive accuracy of a ground-water model: lessons from a postaudit. Ground Water 24:173–184

    Article  Google Scholar 

  • Konikow LF (1995) The value of postaudits in groundwater model applications. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. CRC, Boca Raton, FL, pp 59–78

  • Lemke LD, Cypher JA (2006) Use of alternative conceptual geologic models to evaluate contaminant transport modeling uncertainty in a glacial aquifer system. In: Poeter E, Hill MC, Zheng C (eds) Proceedings of MODFLOW and More 2006: managing ground-water systems. International Ground Water Modeling Center, Golden, CO, pp 41–46

    Google Scholar 

  • Lemke LD, Barrack WA II, Abriola LM (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Ground Water 42:920–934

    Article  Google Scholar 

  • MDEQ (1998) Hydrogeologic investigation: village of Milford Wells, Oakland County. MERA #630117, July 1998, Michigan Department of Environmental Quality, Lansing, MI

  • MDEQ (2004) Toxicological and chemical-physical data for Part 201 generic cleanup criteria and screening levels. Remediation and Redevelopment Division Operational Memorandum No. 1, Attachment 1, Table 4, December 2004, Michigan Dapartment of Environmental Quality, Lansing, MI

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, US Nuclear Regulatory Commission, Washington, DC

    Google Scholar 

  • Passero RN, Straw TW, Schmaltz LJ (1981) Hydrogeologic atlas of Michigan. Dept. of Geology, Western Michigan University, Grand Rapids, MI

  • Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference groundwater flow model. US Geol Surv Open-File Rep 94–464

  • Roeder E, Langwaldt J (2002) Postaudit of a ground water flow and transport model of polychlorophenol contamination in a glacial aquifer. In: Petroleum hydrocarbons and organic chemicals in ground water: prevention, assessment, and remediation conference and exposition. National Ground Water Association, Atlanta, GA, pp 411–424

    Google Scholar 

  • Rungvetvuthivitaya M, Ray C, Green RE (2007) Postaudit study of DBCP and EDB contamination in the Pearl Harbor aquifer. J Hydrol Eng 12:549–558

    Article  Google Scholar 

  • Seifert D, Sonnenborg TO, Scharling P, Hinsby K (2008) Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability. Hydrogeol J 16:659–674. doi:10.1007/s10040-007-0252-3

    Article  Google Scholar 

  • Stewart M, Langevin C (1999) Post audit of a numerical prediction of wellfield drawdown in a semiconfined aquifer system. Ground Water 37:245–252

    Article  Google Scholar 

  • Techna (1998) Groundwater interim response work plan: former Lucas Varity light vehicle braking systems—Milford facility, 101 Oak Street, Milford, Michigan. Project No. A35T0-213, 11 May 1998, Techna, Mahway, NJ

  • Techna (1999) Aquifer performance test and groundwater modeling report: former Lucas Varity Automotive—Milford facility, 101 Oak Street, Milford, Michigan. Project No. A35T0-216, 29 June 1999, Techna, Mahway, NJ

  • Troldborg L, Refsgaard JC, Jensen KH, Engesgaard P (2007) The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system. Hydrogeol J 15:843–860. doi:10.1007/s10040-007-0192-y

    Article  Google Scholar 

  • Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 33:905–908

    Article  Google Scholar 

  • Zheng C, Bennett GD (2002) Applied contaminant transport modeling, 2nd edn. Wiley, New York

    Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; Documentation and user’s guide. Contract report SERDP-99-1, US Army Corps of Engineers, Philadelphia, PA

Download references

Acknowledgements

The Michigan Department of Environmental Quality provided funding for this work under contracts Y01302 and Y01422. The content of this manuscript has not been subject to agency review and does not necessarily represent the views of the MDEQ. Technical support provided by C. F. Barker at Hands & Associates Inc., and the cooperation of F. Morin and R. Calley at the Village of Milford Department of Public Services are gratefully acknowledged. Reviews by D. Siegel and an anonymous reviewer helped to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Lemke.

Electronic supplementary materials

Fig. S1

Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model A: Regional Aquitard (elevations given in feet above mean sea level; 1 foot = 0.3048 meters) (PDF 1732 kb)

Fig. S2

Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model B: Extended Aquifer (PDF 1732 kb)

Fig. S3

Steady state groundwater flow model calibration plot showing calculated versus observed head values for Rose Lake (RL-) and DLZ (DLZ-MW-) monitoring wells for conceptual Model C: Reduced Infiltration (PDF 1732 kb)

Fig. S4

Predicted and observed heads versus time in DLZ- monitoring wells for conceptual model A: Regional Aquitard (PDF 1732 kb)

Fig. S5

Static water level elevations for monitoring wells at the site. Data from sample events with suspected measurement errors have been excluded (PDF 1732 kb)

Fig. S6

Initial benzene concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)

Fig. S7

Initial benzene concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)

Fig. S8

Initial benzene concentration (ppb) - Deep 1 and Deep 2 aquifer zones (PDF 1732 kb)

Fig. S9

Initial MTBE concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)

Fig. S10

Initial MTBE concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)

Fig. S11

Initial MTBE concentration (ppb) - Deep 1 aquifer zone (PDF 1732 kb)

Fig. S12

Initial MTBE concentration (ppb) - Deep 2 aquifer zone (PDF 1732 kb)

Fig. S13

Initial cDCE concentration (ppb) - Shallow aquifer zone (PDF 1732 kb)

Fig. S14

Initial cDCE concentration (ppb) - Intermediate aquifer zone (PDF 1732 kb)

Fig. S15

Initial cDCE concentration (ppb) - Deep 1 aquifer zone (PDF 1732 kb)

Fig. S16

Initial cDCE concentration (ppb) - Deep 2 aquifer zone (PDF 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, L.D., Cypher, J.A. Postaudit evaluation of conceptual model uncertainty for a glacial aquifer groundwater flow and contaminant transport model. Hydrogeol J 18, 945–958 (2010). https://doi.org/10.1007/s10040-009-0554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0554-8

Keywords

Navigation