Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution

Vulnérabilité spécifique et intrinsèque d’une nappe au centre de l’Espagne: le risque de la pollution par les nitrates

Vulnerabilidad específica e intrínseca del agua subterránea en España Central: el riesgo de la contaminación por nitratos

西班牙中部地下水内在和特殊脆弱性 : 硝酸盐污染的风险

Vulnerabilidade intrínseca e específica das águas subterrâneas no centro de Espanha: o risco de poluição por nitratos

Abstract

The intrinsic vulnerability of groundwater in the Comunidad de Madrid (central Spain) was evaluated using the DRASTIC and GOD indexes. Groundwater vulnerability to nitrate pollution was also assessed using the composite DRASTIC (CD) and nitrate vulnerability (NV) indexes. The utility of these methods was tested by analyzing the spatial distribution of nitrate concentrations in the different aquifers located in the study area: the Tertiary Detrital Aquifer, the Moor Limestone Aquifer, the Cretaceous Limestone Aquifer and the Quaternary Aquifer. Vulnerability maps based on these four indexes showed very similar results, identifying the Quaternary Aquifer and the lower sub-unit of the Moor Limestone Aquifer as deposits subjected to a high risk of nitrate pollution due to intensive agriculture. As far as the spatial distribution of groundwater nitrate concentrations is concerned, the NV index showed the greatest statistical significance (p < 0.01). This new type of multiplicative model offers greater accuracy in estimations of specific vulnerability with respect to the real impact of each type of land use. The results of this study provide a basis on which to guide the designation of nitrate vulnerable zones in the Comunidad de Madrid, in line with European Union Directive 91/676/EEC.

Résumé

La vulnérabilité intrinsèque de l’aquifère de la Communauté autonome de Madrid (Comunidad, Espagne centrale) a été évaluée en utilisant les indices DRASTIC et GOD. La vulnérabilité de la nappe à la pollution par les nitrates a été également évaluée en utilisant les indices DRASTIC composite (CD) et nitrate vulnerability (NV). L’utilité des ces méthodes a été testée en analysant la distribution spatiale des concentrations en nitrates dans les différents aquifères localisés dans la zone d’étude: l’aquifère du détritique tertiaire, l’aquifère du calcaire de Moor, l’aquifère du calcaire crétacé et l’aquifère quaternaire. Les cartes de vulnérabilité basées sur ces quatre indices montrent des résultats très similaires, désignant l’aquifère quaternaire et la sous-unité inférieure de l’aquifère du calcaire de Moor comme formations sujettes à un risque élevé de pollution nitratée due à une agriculture intensive. En ce qui concerne la distribution des nitrates dans la nappe, l’indice NV montre la meilleure fiabilité statistique (p < 0.01). Ce nouveau type de modèle multiplicatif présente une plus grande précision dans l’estimation de la vulnérabilité spécifique en rapport avec l’impact réel de chaque type d’utilisation du sol. Les résultats de cette étude fournissent une base de délimitation des Zones Vulnérables aux Nitrates dans la Communauté autonome de Madrid, selon la Directive européenne 91/676/EEC.

Resumen

Se evaluó la vulnerabilidad intrínseca de las aguas subterráneas en la Comunidad de Madrid (España central) usando los índices DRASTIC y GOD. La vulnerabilidad de las aguas subterráneas a la contaminación por nitratos fue también evaluada usando el DRASTIC compuesto (CD) y el índice de vulnerabilidad de nitratos (NV). Se testeó la utilidad de estos métodos mediante el análisis de la distribución espacial de las concentraciones de nitrato en diferentes acuíferos situados en el área de estudio: el acuífero detrítico del Terciario, el acuífero de las calizas del Páramo el acuífero de la calizas del Cretácico y el acuífero Cuaternario. Los mapas de vulnerabilidad basados en estos cuatro índices mostraron valores muy similares, identificándose al acuífero cuaternario y a la subunidad inferior de las calizas del Páramo como los depósitos sometidos a un alto riesgo a la contaminación de nitratos debido a la agricultura intensiva. En cuanto a la distribución espacial de las concentraciones de nitrato en las aguas subterráneas, el índice NV mostró la mayor significación estadística (p < 0.01). Este nuevo tipo de modelo multiplicativo ofrece una mayor precisión en estimaciones de la vulnerabilidad específica con respecto al impacto real de cada tipo de uso de la tierra. Los resultados de este estudio ofrecen una base sobre la que se guía la designación de Zonas Vulnerables de Nitratos en la Comunidad de Madrid, en línea con la Directiva 91/676/EEC de la Unión Europea.

摘要

用DRASTIC和GOD指标对马德里地区 (西班牙中部) 地下水进行了内在脆弱性评价,并用综合DRASTIC (CD) 和硝酸盐脆弱性(NV)指标评价了地下水对硝酸盐污染的脆弱性。通过分析研究区内不同含水层硝酸盐组分的空间分布检验了这些方法的有效性:第三纪碎屑含水层、摩尔 (Moor) 石灰岩含水层、白垩纪石灰岩含水层和第四纪含水层。基于这四个指标绘制的脆弱性地图显示出非常相似的结果,确定第四纪含水层和摩尔石灰岩含水层的较低部分的沉积层面临着由集约化农业带来的高硝酸盐污染风险。至于地下水硝酸盐含量的空间分布而言,NV指标的统计显著性最强 (p < 0.01)。在评价涉及各种土地利用方式实际影响的特殊脆弱性时,这种新型的乘法模型提供了更高的精确度。本研究为根据欧盟官方91/676/EEC标准在马德里地区划定硝酸盐脆弱性区域提供了依据。

Resumo

A vulnerabilidade intrínseca das águas subterrâneas na Comunidade de Madrid (centro de Espanha) foi avaliada utilizando os índices DRASTIC e GOD. A vulnerabilidade das águas subterrâneas à poluição por nitratos também foi avaliada utilizando os índices composite DRASTIC (CD) e nitrate vulnerability (NV). Aferiu-se a utilidade destes métodos através da análise da distribuição espacial das concentrações de nitratos nos diferentes aquíferos localizados na área de estudo: o Aquífero Detrítico Terciário, o Aquífero Calcário Mouro, o Aquífero Calcário Cretácico e o Aquífero Quaternário. Os mapas de vulnerabilidade baseados nos quatro índices apresentaram resultados muito semelhantes, e identificaram o Aquífero Quaternário e a sub-unidade inferior do Aquífero Calcário Mouro como depósitos sujeitos a um elevado risco de poluição por nitratos, devido à agricultura intensiva. No que diz respeito à distribuição espacial das concentrações de nitratos nas águas subterrâneas, o índice NV apresentou a maior significância estatística (p  < 0.01). Este novo tipo de modelo multiplicativo oferece maior precisão nas estimativas da vulnerabilidade específica quanto ao verdadeiro impacte de cada tipo de uso do solo. Os resultados deste estudo fornecem uma base para orientar a designação de Zonas Vulneráveis aos Nitratos na Comunidade de Madrid, em conformidade com a Directiva 91/676/CEE da União Europeia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Adams B, Foster S (1992) Land surface zoning for groundwater protection. J Inst Water Environ Manage 6:312–320

    Article  Google Scholar 

  2. Al-Adamat RAN, Foster IDL, Baban SMJ (2003) Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appl Geogr 23:303–324

    Article  Google Scholar 

  3. Alcolea MA, García Alvarado JM (2006) El agua en la Comunidad de Madrid [Water resource in the Comunidad de Madrid]. Obs Medioambient 9:63–96

    Google Scholar 

  4. Aller L, Bennet T, Lehr JH, Petty RJ (1987) DRASTIC: standardized system for evaluating groundwater pollution potencial using hydrogeologic settings. US EPA Report 600/2-87-035 US EPA, Ada, OK, 622 pp

  5. Antonakos AK, Lambrakis NJ (2007) Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model: an example from NE Korinthia, Greece. J Hydrol 333:288–304

    Article  Google Scholar 

  6. Arauzo M, Martínez-Bastida JJ, Valladolid M (2008) Contaminación por nitrógeno en el sistema “río-acuífero aluvial” de la cuenca del Jarama (Comunidad de Madrid, España): ¿origen agrícola o urbano? [Nitrogen pollution of the “river-aquifer system” in the Jarama basin (Comunidad de Madrid, Spain): Is it from agricultural or urban sources? Limnetica 27:195–210

    Google Scholar 

  7. Arrate I, Sánchez-Pérez JM, Antiguedad I, Vallecillo MA, Iribar V, Ruiz M (1997) Groundwater pollution in quaternary aquifer of the Vitoria-Gasteiz (Basque Country, Spain). Environ Geol 30:257–265

    Article  Google Scholar 

  8. Auge M (2004) Vulnerabilidad de Acuíferos [Aquifer vulnerability]. Rev Latino-Am Hidrogeol 4:85–103

    Google Scholar 

  9. Babiker IS, Mohamed MAA, Hiyama T, Kato K (2005) A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci Total Environ 345:127–140

    Article  Google Scholar 

  10. Cabrera F, Fernandez-Bohy E, Aparicio MG, Murillo JM, Moreno F (1995) Leaching of nitrate from a sandy loam soil under corn and two N-fertilizations. Fres Environ Bull 4:250–255

    Google Scholar 

  11. Civita M (1994) Le Carte délia Vulnerabilitâdegli Acquiferiall’Inqulnamento [Maps of aquifer vulnerability to pollution]. Teoria i Pratica. Pitagora, Bologna, Italy

    Google Scholar 

  12. Civita M, De Regibus C (1995) Sperimentazione di alcune metodologie per la valutazione della vulnerabilita` degli aquiferi [Testing methodologies for assessing aquifer vulnerability]. Quad Geol Appl 3:63–71

    Google Scholar 

  13. Colman IP, Palmer RC, Bellamy PH, Hollis JM (2005) Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database. Hydrogeol J 13:665–674

    Article  Google Scholar 

  14. Comunidad de Madrid (1995) Plan de saneamiento y depuración de las aguas residuales de la Comunidad de Madrid 1995–2005 [Action programme for the treatment of the Comunidad de Madrid waste waters 1995–2005]. Madrid, 81 pp

  15. Comunidad de Madrid (2001) Plan regional de actuaciones en materia de suelos contaminados de la Comunidad de Madrid 2001–2006 [Action program on a regional scale for polluted-soils restoration in the Comunidad de Madrid]. Madrid, 184 pp

  16. Conell LD, den Daele GV (2003) A quantitative approach to aquifer vulnerability mapping. J Hydrol 276:71–88

    Article  Google Scholar 

  17. Confederación Hidrográfica del Tajo (2005) Informe Anual de Aguas Subterráneas de la Confederación Hidrográfica del Tajo año 2005 [Annual report of the Confederación Hidrográfica del Tajo for the year 2005 on groundwater]. Available on the Internet. http://www.chtajo.es/redes/cantidad/aguas_subte.htm. January 2008

  18. Corniello A, Ducci D, Napolitano P (1997) Comparison between parametric methods to evaluate aquifer pollution vulnerability using GIS: an example in the “Piana Campana”, southern Italy. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Engineering geology and the environment. Balkema, Rotterdam, The Netherlands, pp 1721–1726

    Google Scholar 

  19. Council of the European Communities (1980) Directive 80/778/EEC relating to the quality of water intended for human consumption. 15 July 1980, Council of the European Communities, Brussels, Belgium

  20. Council of the European Communities (1991) Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. 12 December 1991, Council of the European Communities, Brussels, Belgium

  21. Debernardi L, De Luca DA, Lasagna M (2007) Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environ Geol. doi:10.1007/s00254-007-1006-1

    Google Scholar 

  22. Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483–493

    Article  Google Scholar 

  23. Environmental Systems Research Institute (2006) ESRI ArcGIS 9.2, Environmental Systems Research Institute, Redlands, CA

  24. European Environment Agency (2000) Mapa de ocupación del suelo para España del año 2000 [CORINE Land Cover map 2000; for Spain]. Available on the Internet. http://www.ign.es/ign_iberpix/index.htm. February 2008

  25. Evans BM, Myers WL (1990) A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. J Soil Water Conserv 45:242–245

    Google Scholar 

  26. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenbooden W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants. Proceedings and Information no. 38, TNO Committee on Hydrological Research, The Hague, pp 69–86

  27. Foster SSD, Hirata R (1991) Determinación del riesgo de contaminación de aguas subterráneas, una metodología basada en datos existentes [Groundwater pollution risk assessment: a methodology using available data]. CEPIS, Brussels, 81 pp

    Google Scholar 

  28. Foster S, Hirata R, Gómez D, D’Elia M, Paris M (2002) Ground water quality protection: a guide for water utilities, municipal authorities, and environment agencies. The World Bank, Washington, DC, 104 pp

    Google Scholar 

  29. Fritch TG, Mcknight CL, Yelderman JC, Arnold JG (2000) An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ Manage 25:337–345

    Article  Google Scholar 

  30. Garrett P, Williams JS, Rossoll CF, Tolman AL (1989) Are ground water vulnerability classification systems workable? In: Proc. Focus Conference on Eastern Regional Ground Water Issues, NWWA, Dublin, Ohio, USA, pp 329–343

  31. Gogu RC, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345

    Article  Google Scholar 

  32. Gogu RD, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques: application to the Néblon river basin (Belgium). Environ Geol 44:881–892

    Article  Google Scholar 

  33. Guimera J (1993) Metodologia de estudio de la contaminacion de acuiferos por nitratos. Aplicacion al acuifero del Maresme. [Methodology for studying aquifer pollution by nitrates: applicability in the Maresme aquifer]. In: Candela L, Varela M (eds) La zona no saturada y la contaminacion de las aguas subterraneas [Unsaturated zone and groundwaters pollution]. CIMNE, Barcelona, pp 197–219

    Google Scholar 

  34. Guo QH, Wang YX, Gao XB, Ma T (2007) A new model (DRARCH) for assessing groundwater vulnerability to arsenic contamination at basin scale: a case study in Taiyuan basin, northern China. Environ Geol 52:923–932

    Article  Google Scholar 

  35. Hamza MH, Added A, Frances A, Rodriguez R (2007) Validity of the vulnerability methods DRASTIC, SINTACS and SI applied to the study of nitrate pollution in the phreatic aquifer of Metline-Ras Jebel-Raf Raf. CR Geosci 339:493–505

    Article  Google Scholar 

  36. Hernández-García MA, Custodio E (2004) Natural baseline quality of Madrid Tertiary Detrital Aquifer groundwater (Spain): a basis for aquifer management. Environ Geol 46:173–188

    Google Scholar 

  37. Heuer K, Brooks P, Tonnessen KA (1999) Nitrogen dynamics in two high elevation catchments during spring snowmelt 1996, Rocky Mountains, Colorado. Hydrol Process 13:2203–2214

    Article  Google Scholar 

  38. Hiscock KM, Lovett AA, Brainerd JS, Parfitt JP (1995) Groundwater vulnerability assessment: two case studies using GIS methodology. Q J Eng Geol 28:179–194

    Article  Google Scholar 

  39. Instituto Geológico y Minero de España (IGME)(1981) Plan Nacional de Investigación de Aguas Subterráneas (PNIAS): Proyecto de investigación hidrogeológica de la cuenca del Tajo. Informes técnicos 1–5 [National Plan for Groundwater Research (PNIAS). Research Project on the hydrogeology of the Tajo basin. Technical reports 1–5]. IGME, Madrid

  40. Instituto Geológico y Minero de España (IGME) (1985) Calidad y contaminación de las aguas subterráneas en España [Groundwater quality and groundwater contamination in Spain]. Informe de síntesis, Tomo II, Anejos, IGME, Madrid, 385 pp. Available on the Internet. http://aguas.igme.es/igme/publica/libro43/lib43.htm. March 2008

  41. Instituto Geológico y Minero de España (IGME) (1988) Mapa Geológico de la Comunidad de Madrid [Geological map of the Comunidad de Madrid]. Scale 1:200000. IGME, Maddrid

    Google Scholar 

  42. Instituto Geológico y Minero de España (IGME) (1993) Las aguas subterráneas en España [Groundwater in Spain]. IGME, Madrid, 531 pp. Available on the Internet. http://aguas.igme.es/igme/publica/libro20/lib20.htm. March 2008

  43. Instituto Geológico y Minero de España (IGME) (1999) Programa de actualización del inventario hidrogeológico (PAIH) [Program to update the hydrogeological inventory]. IGME, Madrid, 183 pp. Available on the Internet. http://aguas.igme.es/igme/publica/libros3_RHS/paih/lib32.htm. January 2008

  44. Instituto Geológico y Minero de España (IGME) (2004) Protección de las aguas subterráneas frente a vertidos directos e indirectos [Groundwater protection from direct and indirect discharges]. In: Loreto FR, Sánchez F, López Geta JA, Antonio J (eds) Hidrogeología y aguas subterráneas [Hydrogeology and groundwater], No. 13. IGME, Madrid, 352 pp. Available on the Internet. http://aguas.igme.es/igme/publica/lib120/lib120.htm. January 2008

  45. Knapp MF (2005) Diffuse pollution threats to groundwater: a UK water company perspective. Q J Eng Geol Hydrogeol 38:39–51

    Article  Google Scholar 

  46. Lin B, Sakoda A, Shibasaki R, Goto N, Suzuki M (2000) Modelling a global biogeochemical nitrogen cycle in terrestrial ecosystems. Ecol Model 135:89–110

    Article  Google Scholar 

  47. Llamas MR, López Vera CF (1975) Estudio sobre los recursos hidráulicos subterráneos del área metropolitana de Madrid y su zona de influencia: avance de las características hidrogeológicas del Terciario Detrítico de la Cuenca del Jarama [Hydraulic resources of the metropolitan area of Madrid and its area of influence: hydrogeological characteristics study of the Tertiary Detrital Aquifer of the Jarama basin]. Agua 88:36–55

    Google Scholar 

  48. Margat (1968) Vulnérabilité des nappes d´eau souterraines á la pollution [Groundwater vulnerability to pollution]. Bases de la cartographie. BRGM 68. SLG198 HYD, BRGM, Orléans, France

  49. Martínez-Bastida JJ, Arauzo M, Valladolid M (2006) Contaminación por nitrato en el acuífero aluvial [Nitrate contamination in the alluvial aquifer]. In: Camargo J (ed) Ecología y conservación del río Henares y sus tributarios [Ecology and conservation of the River Henares and its tributaries]. Universidad de Alcalá de Henares, Ediciones Cersa Madrid, pp 23–34

  50. McLay CDA, Dragden R, Sparling G, Selvarajah N (2001) Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches. Environ Pollut 115:191–204

    Article  Google Scholar 

  51. Ministerio de Agricultura, Pesca y Alimentación (2007) Balance del nitrógeno en la agricultura Española durante 2005 [Nitrate balance in Spanish agricultural systems in 2005]. Secretaría General de Agricultura y Alimentación. Dirección General de Agricultura, Madrid, 51 pp

    Google Scholar 

  52. Ministerio de Medio Ambiente (2001) Caracterización de las fuentes agrarias de contaminación de las aguas por nitratos [Description of agricultural sources that cause water pollution by nitrate]. Secretaría de estado de Aguas y Costas, Dirección General de Obras Hidráulicas y Calidad de Aguas, Madrid, 151 pp

  53. Monturiol F, Alcalá L (1990) Mapa de asociación de suelos de la Comunidad de Madrid [Soil type map of the Comunidad de Madrid]. Scale 1:200.000, Consejería de Agricultura y Cooperación, Comunidad de Madrid y Consejo Superior de Investigaciones Científicas, Madrid, 71 pp

  54. Naqa AE (2004) Aquifer vulnerability assessment using the DRASTIC model at Russeifa landfill, northeast Jordan. Environ Geol 47:51–62

    Article  Google Scholar 

  55. Nobre RCM, Rotunno OC, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94:277–292

    Article  Google Scholar 

  56. Observatorio de la Sostenibilidad en España (2006) Cambios de ocupación del suelo en España: implicaciones para la sostenibilidad [Land use changes in Spain: implications for sustainability]. Ministerio de Medio Ambiente, Univ. Alcalá de Henares, Madrid, 428 pp

  57. Panagopoulos GP, Antonakos AK, Lambrakis NJ (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911

    Article  Google Scholar 

  58. Piscopo G (2001) Groundwater vulnerability map explanatory notes: MacIntyre Catchment. NSW Department of Land and water Conservation, Sydney, 13 pp

  59. Ribeiro L (2000) IS: um novo indice de susceptibilidade de aquiferos á contaminaçao agrícola [SI: a new index of aquifer susceptibility to agricultural pollution]. Internal report, ERSHA/ CVRM, Instituto Superior Técnico, Lisbon, 12 pp

  60. Robins N, Adams B, Foster S, Palmer R (1994) Groundwater vulnerability mapping: the British perspective. Hydrogéologie 3:35–42

    Google Scholar 

  61. Román R, Caballero R, Bustos A, Díez JA, Cartagena MC, Vallejo A, Caballero A (1996) Water and solute movement under conventional corn in central Spain. I. Water balance. Soil Sci Soc Am J 60:1530–1536

    Google Scholar 

  62. Román R, Caballero R, Bustos A (1999) Field water drainage under traditional and improved irrigation schedules for corn in central Spain. Soil Sci Soc Am J 63:1811–1817

    Article  Google Scholar 

  63. Rosen L (1994) A study of the DRASTIC methodology with emphasis on Swedish conditions. Ground Water 32:278–285

    Article  Google Scholar 

  64. Rupert MG (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 39:625–630

    Article  Google Scholar 

  65. Sanchez-Pérez JM, Antigüedad I, Arrate I, García-Linares C, Morell I (2003) The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: a case of study. Sci Total Environ 317:173–187

    Article  Google Scholar 

  66. Secunda S, Collin ML, Melloul AJ (1998) Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. J Environ Manage 54:39–57

    Article  Google Scholar 

  67. Stigter T, Almeida P, Carvalho Dill A, Ribeiro L (2002) Influence of irrigation on groundwater nitrate concentrations in areas considered to have low vulnerability to contamination. In: Proc. XXXII IAH and VI ALHSUD Congress, Mar del Plata, Argentina, Oct. 2002 (CD-ROM)

  68. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99

    Article  Google Scholar 

  69. Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18:645–656

    Article  Google Scholar 

  70. Vias JM, Andreo B, Perales MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595

    Article  Google Scholar 

  71. Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. IAH Int Contrib to Hydrogeol 16, Heise, Hannover, Germany, 131 pp

  72. Worral F, Kolpin DW (2004) Aquifer vulnerability to pesticide pollution: combining soil, land-use and aquifer properties with molecular descriptors. J Hydrol 293:191–204

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Comunidad de Madrid and the European Social Fund (GR/AMB/0745/2004). The Confederación Hidrográfica del Tajo and Instituto Geológico y Minero provided hydrogeological data relating to piezometric and quality sampling of the groundwater networks in the study area.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan J. Martínez-Bastida.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez-Bastida, J.J., Arauzo, M. & Valladolid, M. Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeol J 18, 681–698 (2010). https://doi.org/10.1007/s10040-009-0549-5

Download citation

Keywords

  • Nitrate
  • Groundwater vulnerability
  • Land use
  • Agriculture
  • Spain