Hydrogeology Journal

, Volume 18, Issue 3, pp 577–593 | Cite as

Depth-dependent sampling to identify short-circuit pathways to public-supply wells in multiple aquifer settings in the United States

  • Matthew K. Landon
  • Bryant C. Jurgens
  • Brian G. Katz
  • Sandra M. Eberts
  • Karen R. Burow
  • Christy A. Crandall
Paper

Abstract

Depth-dependent water-quality and borehole flow data were used to determine where and how contamination enters public-supply wells (PSWs) at study sites in different principal aquifers of the United States. At each of three study sites, depth-dependent samples and wellbore flow data were collected from multiple depths in selected PSWs under pumping conditions. The chemistry of these depth-dependent samples, along with samples of the surface discharge from the PSWs, was compared to that of adjacent nested monitoring wells. The results of depth-dependent analyses from sites in Modesto (California), York (Nebraska), and Tampa (Florida) are summarized and compared. Although the exact mechanisms for transport of contaminants to the PSWs varied among these hydrogeologic settings, in all three settings the presence of wells or boreholes or natural preferential flow paths allowed water and contaminants to bypass substantial portions of the aquifer and to reach PSWs or depths in the aquifer more quickly than would have occurred in the absence of these short-circuiting flow paths. The chemistry and flow data from multiple depths was essential to developing an understanding of the dominant flow paths of contaminants to PSW in all three settings. This knowledge contributes to developing effective strategies for monitoring and protection.

Keywords

Groundwater monitoring Groundwater protection Borehole leakage Depth-dependent sampling USA 

Echantillonnage en fonction de la profondeur afin d’identifier les écoulements de type court-circuits dans les puits d’alimentation en eau potable, de plusieurs aquifères des Etats-Unis

Résumé

La qualité de l’eau en fonction de la profondeur et les données d’écoulement de forages ont été utilisées pour déterminer la localisation et l’importance de la contamination qui pénètre les puits d’alimentation en eau potable (PAEP) à l’échelle de différents aquifères principaux des Etats-Unis. Pour chacun des trois sites d’étude, les échantillons en fonction de la profondeur et les données d’écoulement des forages ont été collectées en différentes profondeurs au niveau de PAEP en condition d’exploitation (pompage). La chimie des échantillons pris en différentes profondeurs ainsi que de l’eau prélevée au niveau de l’exhaure des PAEP a été comparée à celle d’un réseau de suivi sur des piézomètres environnants. Les résultats des analyses dépendantes de la profondeur des différents sites de Modesto (Californie), York (Nébraska) et Tampa (Floride) ont été résumés et comparés. Bien que les mécanismes exacts du transport de contaminants des PAEP variaient en fonction des conditions hydrogéologiques des sites, la présence des puits ou forages ou d’écoulements préférentiels naturels ont permis au niveau des trois sites, à l’eau et aux contaminants d’éviter des parties significatives de l’aquifère et d’atteindre les PAEP ou des profondeurs au sein de l’aquifère de manière plus rapide qu’en absence des écoulements de type court-circuits. La chimie et les données concernant les écoulements en différentes profondeurs étaient essentielles pour comprendre l’organisation des écoulements dominants des contaminants au niveau des PAEP dans les trois sites. Cette connaissance apporte une contribution pour développer des stratégies efficaces pour le suivi et la protection des captages.

Muestreo en función de la profundidad para identificar trayectorias de circuito corto en pozos de abastecimiento público en acuíferos localizados en múltiples sitios en los Estados Unidos

Resumen

Se utilizaron datos de calidad de agua en función de la profundidad y de flujo de perforaciones para determinar donde la contaminación entra en los pozos de abastecimiento público (PSWs) en sitios de estudio en diferentes acuíferos principales de los Estados Unidos. En cada uno de los tres sitios estudiados, muestras en función de la profundidad y datos de flujo de pozos fueron recolectados a partir de múltiples profundidades en PSWs seleccionados bajo condiciones de bombeo. Se comparó la química de estas muestras en función de la profundidad, conjuntamente con las muestras de la descarga superficial de los PSWs, con los pozos de monitoreo adyacentes anidados. Los resultados de los análisis en función de la profundidad de los sitios en Modesto (California), York (Nebraska), and Tampa (Florida) fueron resumidos y comparados. Aunque los mecanismos exactos del transporte de contaminantes en los PSWs variaron entre estos sitios hidrogeológicos, en los tres sitios la presencia de pozos o perforaciones o trayectorias de flujo naturales preferenciales permitieron que agua y contaminantes esquiven porciones sustanciales de los acuíferos y alcancen los PSWs o profundidades en el acuífero más rápidamente que lo que habría ocurrido en ausencia de estos circuitos cortos en las trayectorias de flujo. Los datos de química y los datos de flujo a partir de múltiples profundidades fue esencial para desarrollar y entender las trayectorias de flujo dominantes de los contaminantes en los PSW en los tres sitios. Este conocimiento contribuye a desarrollar estrategias efectivas de monitoreo y protección.

利用不同深度取样来识别美国多层含水层条件下流向公共供水井的优势路径

摘要

在所研究的美国的一些主要含水层, 利用了不同深度的水质和钻孔水流数据来确定污染物进入公共供水井 (PSWs) 的途径和方式。对于三个研究场地, 不同深度的样品和井流数据是抽水条件下在选定的PSWs中多个深度上取得的。将这些不同深度样品和PSWs井口样品的水化学与邻近监测井的水化学进行了对比. 对Modesto (加利福利亚)、 York (内布拉斯加州) 和Tampa (佛罗里达州) 地区不同深度的分析结果进行了总结和比较。尽管不同水文地质背景下, 污染物运移到PSWs的机制不同, 但是在这三个背景条件下, 井或钻孔或天然优势路径的存在或使水和污染物绕过部分含水层进入PSWs, 或使其比没有优势流路径时更快地到达含水层的某一深度. 多个深度的水化学和水流数据对于理解这三个含水层背景下污染物进入PSWs的主要水流路径是必要的. 这有助于制定监测和保护的有效策略.

Amostragem a diferentes profundidades em furos de captação para abastecimento público para identificar possíveis trajectórias de contaminantes em diversos ambientes aquíferos nos Estados Unidos da América

Resumo

Dados sobre a qualidade da água dependente da profundidade e da velocidade de fluxo em furos de captação foram usados para determinar a origem e os processos de contaminação que afectam furos de captação para abastecimento público (FCAP) em locais de estudo nalguns dos principais sistemas aquíferos dos Estados Unidos da América. Em cada uma das três zonas de estudo foram recolhidas amostras de água subterrânea e determinadas velocidades de fluxo, a diferentes profundidades, em furos de captação previamente seleccionados e em condições de bombagem. A composição química das amostras de água recolhidas em profundidade e à boca dos furos de captação foi comparada com a registada em multipiezómetros localizados em áreas adjacentes. Os resultados das análises realizadas a diferentes profundidades nas zonas de estudo de Modesto (Califórnia), York (Nebraska) e Tampa (Flórida) foram resumidas e comparadas. Apesar dos mecanismos de transporte de contaminantes nos FCAP variarem de acordo com os diferentes enquadramentos hidrogeológicos, verificou-se que, em qualquer uma das três zonas de estudo, a presença de poços, furos ou mesmo de zonas de fluxo preferencial natural, permitiu que a água e os contaminantes realizassem substanciais bypass nos circuitos naturais dos aquíferos, atingindo os FCAP ou maiores profundidades mais rapidamente do que seria de esperar na ausência destes bypass. Os dados sobre o quimismo da água e as velocidades de fluxo a diferentes profundidades nos furos de captação foram essenciais para um melhor entendimento das principais trajectórias dos contaminantes em cada uma das três zonas de estudo. Este conhecimento contribui para desenvolver estratégias de monitorização e protecção mais efectivas.

References

  1. Aller L (1984) Methods of determining the location of abandoned wells. U.S. Environmental Protection Agency, Ada, Oklahoma, Rep EPA/600/2-83-123Google Scholar
  2. Avci CB (1992) Flow occurrence between confined aquifers through improperly plugged boreholes. J Hydrol 139:97–114CrossRefGoogle Scholar
  3. Brown CJ, Jurgens BC, Katz BG, Landon MK, Eberts, SM (2007) Arsenic and uranium in four aquifer settings: occurrence, distribution, and mechanisms for transport to supply wells. Proceedings of the 2007 National Groundwater Association Naturally Occurring Contaminants Conference: Arsenic, Radium, Radon, and Uranium, Charleston, South Carolina, March 22–23, 2007, p 15Google Scholar
  4. Burow KR, Panshin SY, Dubrovsky NM, VanBrocklin D, Fogg GE (1999) Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California: analysis of chemical data and ground-water flow and transport simulations. US Geol Surv Water-Resour Invest Rep 99–4059, p 57Google Scholar
  5. Burow KR, Shelton JL, Hevesi JA, Weissmann GS (2004) Hydrogeologic characterization of the Modesto area, San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2004–5232, p 54. Available online at: http://pubs.usgs.gov/sir/2004/5232/. Accessed 15 Aug 2005
  6. Burow KR, Dubrovsky NM, Shelton JL (2007) Temporal trends in concentrations of DBCP and nitrate in ground water in the eastern San Joaquin Valley, California, USA. Hydrogeol J 15:991–1007CrossRefGoogle Scholar
  7. Burow KR, Jurgens BC, Kauffman L, Daglish BA, Phillips SP, Shelton JL (2008) Simulations of ground-water flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008– 5035, p 47. Available online at: http://pubs.usgs.gov/sir/2008/5035/. Accessed 2 Jun 2008
  8. Chesnaux R, Chapuis RP, Molsen JW (2006) A new method to characterize hydraulic short-circuits in defective borehole seals. Ground Water 44(5):676–681Google Scholar
  9. Church PE, Granato GE (1996) Bias in ground-water data caused by wellbore flow in long-screen wells. Ground Water 34(2):262–273CrossRefGoogle Scholar
  10. Clark BR, Landon MK, Kauffman LJ, Hornberger GZ (2008) Simulations of ground-water flow, transport, age, and particle tracking near York, Nebraska for a study of transport of anthropogenic and natural contaminants (TANC) to public supply wells. US Geol Surv Sci Invest Rep 2007-5068, p 48. Available online at: http://pubs.usgs.gov/sir/2007/5068/. Accessed 25 Apr 2008
  11. Collar RJ, Mock PA (1997) Using water-supply wells to investigate vertical groundwater quality. Ground Water 35(5):743–750CrossRefGoogle Scholar
  12. Crandall CA, Kauffman LJ, Katz BG, Metz PA, McBride WS, Berndt MP (2009) Simulations of ground-water flow and particle tracking analysis in the area contributing recharge to a public supply well near Tampa, Florida. US Geol Surv Sci Invest Rep 2008-5231 (in press)Google Scholar
  13. Danskin WR, Church CD (2005) Determining age and vertical contribution of ground water pumped from wells in a small coastal river basin. US Geol Surv Open-File Rep 2005–1032, p 4. Available online at: http://pubs.usgs.gov/of/2005/1032/. Accessed 17 Sep 2005
  14. Eberts SM, Erwin ML, Hamilton PA (2005) Assessing the vulnerability of public-supply wells to contamination from urban, agricultural, and natural sources. US Geol Surv Fact Sheet 2005–3022, p 4. Available online at http://pubs.usgs.gov/fs/2005/3022/. Accessed 21 Jul 2005
  15. Gass TE, Lehr JH, Heiss HW (1977) Impact of abandoned wells on ground water. US Environmental Protection Agency, Washington, DC, Rep EPA/600/3-77-095Google Scholar
  16. Gosselin DC, Ayers JF, Zhang Y-K (1994) Modeling concentration variations in high-capacity wells: implications for groundwater sampling. Water Resour Bull 30(4):613–622Google Scholar
  17. Gossell MA, Nishikawa T, Hansen RT, Izbicki JA, Tabidian MA, Bertine K (1999) Application of flowmeter and depth-dependent water quality data for improved production well construction. Ground Water 37(5):729–735CrossRefGoogle Scholar
  18. Gurdak JJ, Walvoord MA, McMahon PB (2008) Susceptibility to enhanced chemical migration from depression-focused preferential flow, High Plains Aquifer. Vadose Zone Journal 7(4):1172–1184Google Scholar
  19. Hanson RT (2005) The significance of wellbore flow in the Santa Clara Valley, California. Eos Trans. AGU 86(52), Fall Meeting Supplement, Abstract H13L-01Google Scholar
  20. Hanson RT, Li Zhen, Faunt CC (2004) Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara County, California. US Geol Surv Sci Invest Rep 2004–5231, p 75. Available online at: http://pubs.usgs.gov/sir/2004/5231/. Accessed 2 Sep 2005
  21. Hart DJ, Bradbury KR, Feinstein DT (2006) The vertical hydraulic conductivity of an aquitard at two spatial scales. Ground Water 44(2):201–211CrossRefGoogle Scholar
  22. Hutson SS, Barber NL, Kenny JF, Linsey KS, Lumia DS, Maupin MA (2004) Estimated use of water in the United States in 2000. US Geol Surv Cir 1268, Available online at: http://pubs.usgs.gov/circ/2004/circ1268/. Accessed 19 Dec 2005
  23. Izbicki JA (2004) A small-diameter sample pump for collection of depth-dependent samples from production wells under pumping conditions. US Geol Surv Fact Sheet 2004-3096 2 pp. Available online at: http://pubs.usgs.gov/fs/2004/3096/. Accessed 19 Aug 2005
  24. Izbicki JA, Danskin WR, Mendez GO (1998) Chemistry and isotopic composition of ground water along a section near the Newmark Area, San Bernadino County, California. US Geol Surv Water-Resour Invest Rep 97–4179, p 27Google Scholar
  25. Izbicki JA, Christensen AH, Hanson RT (1999) U.S. Geological Survey combined well-bore flow and depth-dependent water sampler. US Geol Surv Fact Sheet 196-99, p 2. Available online at: http://pubs.usgs.gov/fs/1999/fs19699/. Accessed 15 May 2004
  26. Izbicki JA, Borchers JW, Leighton DA, Kulongowski J, Fields L, Galloway DL, Michel RL (2003) Hydrogeology and geochemistry of aquifers underlying the San Lorenzo and San Leandro areas of the East Bay Plain, Alameda County, California. US Geol Surv Water-Resour Invest Rep 02-4259, p 88Google Scholar
  27. Izbicki JA, Christensen AH, Newhouse MW, Aiken GR (2005a) Inorganic, isotopic, and organic composition of high-chloride water from wells in a coastal southern California aquifer. Appl Geochem 20:1496–1517CrossRefGoogle Scholar
  28. Izbicki JA, Christensen AH, Newhouse MW, Smith GA, Hanson RT (2005b) Temporal changes in the vertical distribution of flow and chloride in deep wells. Ground Water 43(4):531–544CrossRefGoogle Scholar
  29. Izbicki JA, Metzger LF, McPherson KR, Everett RR, Bennett GL (2006) Sources of high-chloride water to wells, eastern San Joaquin ground-water subbasin, California. US Geol Surv Open-File Rep 2006-1309, Available online at: http://pubs.usgs.gov/of/2006/1309/. Accessed 29 Nov 2006
  30. Izbicki JA, Stamos CL, Metzger LF, Halford KJ, Kulp TR, Bennett GL (2008) Source, distribution, and management of arsenic in water from wells, Eastern San Joaquin ground-water subbasin, California. US Geol Surv Open-File Rep 2008-1272, Available online at: http://pubs.usgs.gov/of/2008/1272/. Accessed 25 Sep 2008
  31. Javandel I, Tsang CF, Witherspoon PA (1988) The hydrologic detection of abandoned wells near proposed injection wells for hazardous waste disposal. Water Resour Res 24(2):261–270CrossRefGoogle Scholar
  32. Jurgens BC, Burow KR, Dalgish BA, Shelton JL (2008) Hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2008-5156, p 78. Available online at: http://pubs.usgs.gov/sir/2008/5156/, Accessed 25 Sep 2008
  33. Katz BG, Crandall CA, Metz PA, McBride S, Berndt MP (2007) Chemical characteristics, water sources and pathways, and age distribution of groundwater in the contributing recharge area of a public-supply well near Tampa, Florida, 2002-2005. US Geol Surv Sci Invest Rep 2007-5139, p 83. Available online at: http://pubs.usgs.gov/sir/2007/5139/. Accessed 4 Mar 2008
  34. Konikow LF, Hornberger GZ (2006) Modeling effects of multimode wells on solute transport. Ground Water 44(5):648–660Google Scholar
  35. Koterba MT, Wilde FD, Lapham WW (1995) Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program—collection and documentation of water-quality samples and related data. US Geol Surv Open-File Rep 95-399, p 113Google Scholar
  36. Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882CrossRefGoogle Scholar
  37. Landon MK, Clark BR, McMahon PB, McGuire VL, Turco MJ (2008) Hydrogeology, chemical characteristics, and transport processes in the zone of contribution of a public-supply well in York, Nebraska. US Geol Surv Sci Invest Rep 2008-5050, p 149. Available online at http://pubs.usgs.gov/sir/2008/5050/. Accessed 27 Aug 2008
  38. Lapham WW, Wilde FD, Koterba MT (1995) Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program: selection, installation, and documentation of wells, and collection of related data. US Geol Surv Open-File Rep 95-398, p 69Google Scholar
  39. McMahon PB, Böhlke JK, Kauffman LJ, Kipp KL, Landon MK, Crandall CA, Burow KR, Brown CJ (2008) Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States. Water Resour Res 44(W04401) doi:10.1029/2007WR006252
  40. Morrissey DJ (1989) Estimation of the recharge area contributing water to a pumped well in a glacial-drift, river-valley aquifer. US Geol Surv Water-Supply Paper 2338, p 41Google Scholar
  41. Reilly TE, LeBlanc DR (1998) Experimental evaluation of factors affecting temporal variability of water samples obtained from long-screened wells. Ground Water 36(4):566–576CrossRefGoogle Scholar
  42. Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115(2):270–276CrossRefGoogle Scholar
  43. Renken RA, Cunningham KJ, Zygnerski MR, Wacker MA, Shapiro AM, Harvey RW, Metge DW, Osborn CL, Ryan JN (2005) Assessing the vulnerability of a municipal well field to contamination in a karst aquifer. Environ Eng Geosci 11(4):319–331CrossRefGoogle Scholar
  44. Santi PM, McCray JE, Martens JL (2006) Investigating cross-contamination of aquifers. Hydrogeol J 14:51–68CrossRefGoogle Scholar
  45. Selker JS, McCord JT, Keller CK (1999) Vadose zone processes. CRC Press, Boca Raton, Florida, p 352Google Scholar
  46. Silliman S, Higgins D (1990) An analytical solution for steady-state flow between aquifers through an open well. Ground Water 28(2):184–190CrossRefGoogle Scholar
  47. Stewart JW, Goetz CL, Mills LR (1978) Hydrogeologic factors affecting the availability and quality of ground water in the Temple Terrace area, Hillsborough County, Florida. US Geol Surv Water-Resour Invest 78-4, p 38Google Scholar
  48. U.S. Environmental Protection Agency (1999) A review of contaminant occurrence in public water systems. USEPA Office of Water, EPA 816-R-99-006, p 78Google Scholar
  49. U.S. Geological Survey (2003) Principal aquifers of the 48 conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands. available online at http://www.nationalatlas.gov/mld/aquifrp.html. Accessed 29 Apr 2008
  50. U.S. Geological Survey (variously dated) National field manual for the collection of water-quality data. US Geol Surv Tech of Water-Resour Invest Book 9, ch. A1-A9. Available online at http://pubs.water.usgs.gov/twri9A. Accessed 10 Jun 2009
  51. Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Paper 1401-D, p 127Google Scholar
  52. Wilson N (1995) Soil water and ground water sampling. Lewis Publishers, Boca Raton, Florida, p 190Google Scholar
  53. Zinn BA, Konikow LF (2007) Effects of intraborehole flow on groundwater age distribution. Hydrogeology J 15:633–643CrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2009

Authors and Affiliations

  • Matthew K. Landon
    • 1
  • Bryant C. Jurgens
    • 2
  • Brian G. Katz
    • 3
  • Sandra M. Eberts
    • 4
  • Karen R. Burow
    • 2
  • Christy A. Crandall
    • 3
  1. 1.U.S. Geological SurveySan DiegoUSA
  2. 2.U.S. Geological SurveySacramentoUSA
  3. 3.U.S. Geological SurveyTallahasseeUSA
  4. 4.U.S. Geological SurveyColumbusUSA

Personalised recommendations