Skip to main content

Advertisement

Log in

Characterization of the Eva Verda basin aquifer (Saint Marcel, Aosta Valley, Italy) through geochemical and geostructural methods and analysis

Caractérisation de l’aquifère Eva Verda (Saint Marcel, Vallée d’Aoste, Italie) à partir de métodes géochimiques et structurales et analyses

Caracterización del acuífero de la cuenca Eva Verda (Saint Marcel, Valle Aosta, Italia) a través de métodos y análisis geoquímicos y geoestructural

基于地球化学与地质构造方法分析意大利Saint Marcel, Aosta峡谷的Eva Verda盆地含水层特征

Caracterização do aquífero da bacia de Eva Verda (Saint Marcel, Vale de Aosta, Itália) através de métodos e análises geoquímicas e geoestruturais

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The groundwater system of the Eva Verda basin (Saint Marcel Valley, southern side of the middle Aosta Valley, Italy) has many springs that can be used as sources for drinking water. This area is near the disused Servette mine, which can be a pollutant source (metals and sulfides) for the springs located downhill. Aquifer characterization was done using a multidisciplinary approach: geostructural, lithological, hydrogeological and geochemical. In particular, the geostructural analysis showed that the preferential water-flow direction is controlled by tectonics and that it has a trend along the slope toward the downhill springs. The mine drainage flow direction is in agreement with this trend and can pollute the springs. Chemical analysis revealed three water groups: (1) SO 2-4 –Ca2+–Mg2+ rich water (mine drainage), (2) HCO -3 –SO 2-4 –Ca2+ rich water and (3) HCO -3 –Ca2+ rich water (freshwater). The second group of water results from the different percentage mix between the first and the third waters. The low percentage of mine polluted water demonstrates that there is a high dilution and low pollution of waters that can be exploited for drinking.

Résumé

Le système hydrogéologique du basin versant d’Eva Verda (Vallée de Saint-Marcel, affluent méridional de la vallée moyenne d’Aoste, Italie) comprend tant de sources qu’elles sont utilisées pour l’alimentation en eau potable. Cette région est située à proximité de la mine désaffectée de la Servette, qui peut être à l’origine de contaminations (métaux et sulfates) pour les sources situées à l’aval. La caractérisation de l’aquifère a été réalisée selon une approche pluridisciplinaire : géologie structurale, lithologie, hydrogéologie et géochimie. L’analyse structurale a montré que les directions des écoulements préférentiels de l’eau est contrôlé par la tectonique et influence l’organisation des sources le long de la pente. La direction de l’écoulement issu du drainage minier est en cohérence avec cette organisation et peut ainsi contaminer les sources. Les analyses chimiques mettent en évidence trois familles distinctes: (1) eau riche en SO 2-4 –Ca2+–Mg2+ (drainage minier), (2) eau riche en HCO -3 –SO 2-4 –Ca2+ et (3) eau riche en HCO -3 –Ca2+ (eau douce). Le deuxième groupe d’eau est le résultat d’un mélange entre les deux autres groupes. Le faible pourcentage d’eau contaminée par le drainage minier indique qu’au vu du faible taux de dilution et de pollution, l’eau des sources peut être utilisé pour l’alimentation en eau potable.

Resumen

El sistema de aguas subterráneas de la cuenca Eva Verda (Valle Saint Marcel – parte meridional del Valle Aosta medio en Italia) tiene muchos manantiales que pueden ser usados como fuente de agua potable. Este área está cerca de la mina abandonada Servette, que puede ser una fuente de contaminantes (metales y sulfuros) para los manantiales situados pendiente abajo. La caracterización del acuífero fue hecha usando un enfoque multidisciplinario: geoestructural, litológico, hidrogeológico y geoquímica. En particular, el análisis geoestructural mostró que el sentido preferencial de flujo del agua está controlado por la tectónica y que ello tiene una tendencia a lo largo de la pendiente hacia los manantiales ubicadas en la parte baja. El sentido de flujo del drenaje de la mina está de acuerdo con esta tendencia y puede contaminar los manantiales. Los análisis químicos revelaron tres grupos de agua: (1) agua rica en HCO -3 –SO 2-4 –Ca2+ (drenaje de la mina), (2) agua rica en HCO -3 –SO 2-4 –Ca2+ y (3) agua rica en HCO -3 –Ca2+ (agua dulce). El segundo grupo de agua es la resultante de una mezcla de diferentes porcentajes entre la primera y tercera agua. El bajo porcentaje de agua contaminada de la mina demuestra que existe una alta dilución y baja contaminación de las aguas que pueden ser explotadas para el consumo.

摘要

Saint Marcel峡谷位于意大利中Aosta峡谷南侧的Eva Verda盆地含水层系统有许多可以饮用的泉水出露。该区附近废弃的Servette矿, 可能是山下泉水的污染源 (金属和硫化物) 。采用多手段方法描述了含水层特征, 包括地质构造、岩性、水文地质和地球化学。地质构造分析表明, 优势流向受构造控制, 并有向坡下泉水出露点方向流动的趋势。尾矿水流向与此流向一致, 会污染泉水。水化学分析揭示了三种类型的水: (i) SO 2-4 -Ca2+- Mg2+型水 (尾矿水), (ii) HCO -3 - SO 2-4 - Ca2+型水, (iii) HCO -3 - Ca2+型水 (淡水) 。第二种水是由第一种和第三种水按不同比例混合而成。矿坑污染水的比例较低说明该水存在高稀释和低污染, 可作为饮用水加以开发利用。

Resumo

O sistema de águas subterrâneas da bacia de Eva Verda (vale de Saint Marcel – lado sul do vale médio de Aosta, Itália) possui muitas nascentes que podem ser utilizadas como origens para água de abastecimento. Esta área é próxima da mina abandonada de Servette, que pode ser uma fonte poluidora (metais e sulfuretos) para as nascentes situadas abaixo na encosta. A caracterização do aquífero foi feita utilizando uma aproximação multidisciplinar: geoestrutural, litológica, hidrogeológica e geoquímica. Em particular, a análise geoestrutural mostrou que a direcção preferencial de fluxo é controlada pela tectónica e que este apresenta uma direcção tendencial de escoamento ao longo do declive em direcção às nascentes abaixo na encosta. A direcção de escoamento de drenagem da mina está de acordo com esta direcção e pode poluir as nascentes. As análises químicas revelaram três grupos de águas: (1) águas ricas em HCO -3 –SO 2-4 –Ca2+ (drenagem da mina), (2) águas ricas em HCO -3 –SO 2-4 –Ca2+ e (3) águas ricas em HCO -3 –Ca2+ (água doce). O segundo grupo de águas resulta da diferente percentagem de mistura entre o primeiro e o terceiro grupo. A baixa percentagem de água poluída pela mina demonstra que existe uma diluição elevada e uma poluição reduzida das águas, as quais podem ser exploradas para abastecimento de água potável.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10(1–2):1–54

    Article  Google Scholar 

  • Blasius H (1913) Physic laws that describe the friction in fluids. Mitt Forschungsard 131

  • Brown SR, Kranz RL, Bonner BP (1986) Correlation between the surfaces of natural rock joints. Geophys Res Lett 13(13):1430–1433

    Article  Google Scholar 

  • Buonaiuto E, Notarpietro S, Zuppi GM (1999) Esperimenti di tracciamento per studi di inquinamento [Tracing test for pollution study]. Quad Geol Appl 2:219–226

    Google Scholar 

  • Cardellicchio N, Cavalli S, Ragone P, Rivello JM (1999) New strategies for determination of transition metals by complexation ion-exchange chromatography and post column reaction. J Cromatogr A 847:251–259

    Article  Google Scholar 

  • Celico P (1986) Prospezioni idrogeologiche II [Hydrogeological investigation II]. Liguori, Naples, Italy

    Google Scholar 

  • Ciceri E, Gambillara R, Masciocchi N, Monticelli D, Tumiati S (2004) Characterisation of the Eve verda in the St. Marcel Valley Aosta (Italian Western Alps). Int Geol Congr Abstract 32(1):359

    Google Scholar 

  • Civita M (2005) Idrogeologia applicata e ambientale [Applied and environmental hydrogeolog]). CEA, Milan, Italy

    Google Scholar 

  • D’Aquino L (2006) Analisi delle prove idrauliche su di un acquifero fratturato attraveso il metodo sperimentale di Kazemi [Analysis of the hydraulic test of the fractured aquifer through the use of Kazemi experimental method]. XXX Convegno di idraulica e costruzioni idrauliche, Rome, 10–16 September 2006

  • Dossi C, Recchia S, Fusi A (2000) Automated chloride analysis in catalytic science: a low-cost hardware and software implementation. Fresenius’ J Anal Chem 367:416–421. doi:10.1007/S002160000359

    Article  Google Scholar 

  • Faure G (1996) Principles and applications of geochemistry. Macmillan, New York

    Google Scholar 

  • Fornaseri M (1986) Lezioni di geochimica [Lessons of geochemistry]. Masson editoriale Veschi, Milan, Italy

    Google Scholar 

  • Garbrecht J, Piechot TC (2006) Climate variations, climate change, and water resources engineering. American Society of Civil Engineers, Reston, VA

  • Gattinoni P, Scesi L, Francani V (2005) Tensore di permeabilità e direzione di flusso preferenziale in un ammasso roccioso fratturato [Hydraulic conductivity tensor and preferential flow directions in the fractured rock mass]. Quad tecnich protez ambient 12(1):79–98

    Google Scholar 

  • Gentier S, Billaux D, van Vliet L (1989) Laboratory testing of the voids of a fracture. Rock Mech Rock Eng 22:149–157

    Article  Google Scholar 

  • Gianotti F (1999) Geological and geomorphological evidence for the Aosta-Ranzola fault along the Aosta Valley. In: Fission track analysis: theory and application. Mem Sci Geol 51(2):498–500

  • IUPAC (1995) Analytical chemistry division: nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67:1699–1723

    Article  Google Scholar 

  • Kazemi H, Seth MS, Thomas GW (1980) The interpretation of interferences tests in naturally fractured reservoir with uniform fracture distribution. Soc Petrol Eng J:463–472

    Google Scholar 

  • Kiraly L, Mathey B, Tripet JP (1971) Fissuration et orientation des cavités souterraines: règion de la Grotte de Milandre (Jura tabulaire) [Cracking and orientation of the subsurface hollows: Grotte de Milandre (French Jura) area]. Bull Soc Neuchateloise Sci Nat 94:99–114

    Google Scholar 

  • Krutow-Mozgawa A (1988) Métamorphisme dans les sédiments riches en fer ou magnesium de la couverture des ophiolites piémontaises (mine de Servette, Val d'Aoste) [Metamorphism in the piedmontese ophiolite cover sediment iron and magnesium enriched (mine de Servette, Val d'Aoste)]. Thèse de 3ème cycle, Université Pierre et Marie Curie, Paris VI

  • Louis C (1967) Etude des écoulements d’eau dans les roches fissurées et de leur influences sur la stabilité des massifs rocheaux [Study of the percolation into the fractured rock mass and their influence on stability]. Bull Direction Etudes Rech Ser A Nucl Hydraul Term 3:5–132

    Google Scholar 

  • Louis C (1974) Introduction à l’hydraulique des roches [Introduction to the hydraulics of rocks]. Bull Direction Etudes Rech Ser A Nucl Hydraul Term 3:5–132

    Google Scholar 

  • Martin S, Tartarotti P (1989) Polyphase HP metamorphism in the ophiolitic glaucophanites of the lower St. Marcel Valley (Aosta, Italy). Ofioliti 14(3):135–156

    Google Scholar 

  • Martin S, Godard G, Rebay G (2004) B02 Field trip guidebook for international geological meeting, Florence, 20–28 August 2004

  • Nikuradse J (1930) Untersuchungen uber turbolente Stromungen in nicht kreisformigen Rohren [Turbulent current investigation in a circular pipe]. Ing-Arch 1:306–332

    Article  Google Scholar 

  • Noussan E (1972) Les fontaines colorées [The colored springs]. Bull Soc Flore valdôtaine 26:32–35

    Google Scholar 

  • Orlando BM, Burton I (2003) Change: adaptation of water resources management to climate change. IUCN, Gland, Switzerland

  • Piggott AR (1990) Analytical and experimental studies of rock fracture hydraulics. PhD Thesis, Pennsylvania State University, USA

  • Pioseuille JLM (1839) Recherches sur les causes du movement du sang dans les vaisseaux capillaries [Research about blood flow in vas capillaries]. CR Acad Sci 6:554560. (Also appeared in Memoires des Savants Etrangers. Acad. Sci., Paris, vol. VII: 105–175)

  • Scesi L, Gattinoni P (2007) Roughness control on hydraulic conductivity in fractured rocks. Hydrogeol J 15:201–211

    Article  Google Scholar 

  • Snow DT (1969) The frequency and apertures of fractured rock. Int J Rock Mech Min Sci 6(4):23–40

    Google Scholar 

  • Skiles JW, Hanson JD (1994) Responses of arid and semiarid watersheds to increasing carbon dioxide and climate change as shown by simulation studies. Clim Change 26(4):377–397

    Article  Google Scholar 

  • St. Martin de La Motte (Comte de) (1785) Sur la fontaine verte de Saint Marcel dans la Vallée d’Aoste [About green water spring of the Saint Marcel in the Aosta Valley]. Mémoires de Mathématiques et de Physique tirés des régistres de l’Académie Royale des Sciences, Turin, Italy

  • Tartarotti P (1988) Le ofioliti piemontesi nella media e bassa valle di St. Marcel (Aosta) [Piedmontese ophiolite in the middle and low Saint Marcel Valley]. PhD Thesis, Università di Padova, Italy

  • Tartarotti P, Martin S, Polino R (1986) Geological data about the ophiolitic sequences in the St. Marcel Valley (Aosta Valley). Ofioliti 11:343–346

    Google Scholar 

  • Terrana, S (2006) Caratterizzazione idrogeologica dell’area mineraria di Servette (Saint Marcel – Valle d’Aosta) [Hydrogeological characterization of Servette mine area (Saint Marcel – Aosta valley)]. Graduation Thesis, Università dell’Insubria, Italy

  • Tumiati S, Casartelli P, Mambretti A, Martin S (2004) The ancient mine of Servette (Saint Marcel, Val d’Aosta, western Italian alps): a mineralogical, metallurgical and charcoal analysis of furnace slags. Archaeometry 47(2):317–340

    Article  Google Scholar 

  • Tumiati S, Godard G, Masciocchi N, Martin S, Monticelli D (2007) Environmental factors controlling the precipitation of Cu-bearing hydrotalcite-like compounds from mine waters: the case of the “Eve verda” spring (Aosta Valley, Italy). Eur J Mineral 20(1):73–94

    Google Scholar 

  • Wolkersdorfer C, Bowell R (2005a) Contemporary reviews of mine water studies in Europe, part 2. Mine Water Environ 24:2–37

    Article  Google Scholar 

  • Wolkersdorfer C, Bowell R (2005b) Contemporary reviews of mine water studies in Europe, part 3. Mine Water Environ 24:58–76

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Aosta Valley Region and Saint-Marcel municipalities for their assistance. In particular, we thank Prof. C. Dossi for the use of the Analytical Chemistry Laboratory of Insubria University. The authors are also indebted to Prof. G. Godard (Institut de Physique du Globe de Paris et Université Paris-Diderot, France), Dr S. Galli, Prof. N. Masciocchi, Dr A. Centurini (Università degli Studi dell’Insubria, Como, Italy) and Eng. C. Lorenzo (Politecnico di Milano, Italy). Dr S. Terrana and Dr R. Gambillara contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Terrana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terrana, S., Gambillara, R., Scesi, L. et al. Characterization of the Eva Verda basin aquifer (Saint Marcel, Aosta Valley, Italy) through geochemical and geostructural methods and analysis. Hydrogeol J 18, 487–499 (2010). https://doi.org/10.1007/s10040-009-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0494-3

Keywords