Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time

Eau saline profonde dans la craie du nord-ouest de l’Europe : origine, caractéristiques et évolution de l’interface à travers les temps géologiques

Agua salada profunda en el Chalk del Noroeste europeo: origen, características de la interfase y desarrollo a través del tiempo geológico

欧洲西北部白垩系深部盐水: 起源、界面特征及地质时期的演化

Águas salinas profundas em Chalk (calcáreo puro) no Noroeste da Europa: origem, características da interface e desenvolvimento ao longo do tempo geológico

  • 303 Accesses

  • 21 Citations

Abstract

High-concentration saltwaters occur in many places in the regional Chalk aquifers of North-West Europe; to investigate deep occurrences, profiles of interstitial porewater chemistry have been studied from three 250–450m deep cores drilled in the eastern parts of Zealand, Denmark. At the studied location, saline water in the Chalk resides at depths from 40 to 80m and salinity increases with depth. Concentrations of chloride up to ca. 30,000ppm have been observed at depths of 400m. Measured vertical hydraulic heads in open boreholes suggest that advective groundwater flow is now restricted in deeper parts of the Chalk formation and diffusive transport is thus the predominant transport mechanism. Laboratory-measured porosity and effective diffusion coefficients were used as input to a numerical 1D diffusion model of the interface between freshwater in an upper, fractured aquifer and modified connate formation water below. The model satisfactorily simulated the observed chloride and δ18O profiles. The diffusive refreshening of the Chalk formation has been going on for about 0.9 million years. The connate water in the Chalk of parts of the sedimentary basin seems to have been modified by transport of saltwater from underlying Mesozoic and Paleozoic sediments during compaction, which presumably ceased around 4 million years ago.

Résumé

Des eaux à forte salinité ont été observées à divers endroits de l’aquifère régional de la craie au nord-ouest de l’Europe ; afin d’étudier ces niveaux profonds, la chimie de l’eau interstitielle le long de profils a été étudiée à partir de 3 carottes de 250 à 450 mètres de profondeurs localisées dans la partie est de Seeland au Danemark. Sur le site d’étude, les eaux riches en sels se trouvent dans la craie à une profondeur comprise entre 40 et 80 m et la salinité augmente avec la profondeur. Des concentrations en chlorures allant jusqu’à environ 30,000 ppm ont été mesurées à des profondeurs de 400 m. Les hauteurs hydrauliques verticales mesurées dans les forages suggèrent qu’un flux advectif des eaux souterraines ne se retrouve maintenant que dans les parties les plus profondes de l’aquifère de la craie alors que le transport diffusif domine partout ailleurs. La porosité mesurée en laboratoire et les coefficients de diffusion réels ont été utilisés comme entrée du modèle numérique 1D de diffusion de l’interface entre un aquifère d’eau douce en surface et un aquifère fracturé et des eaux connées en dessous. Le modèle simule de manière satisfaisante les chlorures observés et les profils de δ18O. La dilution diffusive des formations de la craie se fait depuis environ 0.9 million d’années. Les eaux connées de la craie dans une partie du bassin sédimentaire semblent avoir été modifiées par transport d’eau salée depuis les couches de sédiments formés au Mésozoïque et Paléozoïque durant la compaction qui probablement a cessé il y a environ 4 million d’années.

Resumen

Se han estudiado perfiles químicos del agua intersticial de poros a partir de tres testigos de perforaciones de una profundidad de 250 – 450 m perforados en las regiones orientales de Zealand en Dinamarca para investigar la existencia en profundidad de aguas saladas de altas concentraciones que se presentan en muchos lugares en acuíferos regionales del Chalk en el Noroeste europeo. En el sitio estudiado, el agua salina en el Chalk reside a profundidades de 40 a 80 m y la salinidad se incrementa con la profundidad. Se han observado concentraciones de cloruro de hasta aproximadamente 30,000 ppm en profundidades de 400 m. Las cargas hidráulicas verticales medidas en las perforaciones abiertas sugieren que el flujo advectivo de las aguas subterráneas está actualmente restringido en las partes más profundas de la formación del Chalk y el transporte difusivo es así el mecanismo predominante de transporte. Se utilizaron la porosidad medida en laboratorio y los coeficientes de difusión efectiva como entrada a un modelo numérico de difusión 1D de la interfase entre el agua dulce en el acuífero superior fracturado y una formación inferior de agua connata modificada. El modelo simuló satisfactoriamente los perfiles observados de cloruro y δ18O observados. La renovación difusiva de la formación del Chalk se ha venido produciendo durante aproximadamente 0.9 millones de años. El agua connata en el Chalk de parte de la cuenca sedimentaria parece haber sido modificada por transporte de agua salada desde los sedimentos Mesozoicos y Paleozoicos subyacentes durante la compactación, la cual que presumiblemente cesó hace alrededor de 4 millones de años.

摘要

欧洲西北部白垩系含水层广泛分布高浓度盐水。为调查其深部分布, 根据丹麦西兰岛东部3个深度在250-450m之间的钻孔岩芯研究了剖面上的孔隙水化学。在研究区内, 白垩含水层的盐水分布深度在40-80m, 其盐度随深度增高。在400m深度观测到氯浓度可达约30, 000 ppm。测得的开放钻孔垂向水头表明, 目前地下水平流局限在白垩系深部, 故扩撒运移是主要运移机制。将室内测定的孔隙度和有效扩散系数作为1维数值扩散界面模型的输入参数, 其界面位于上部裂隙含水层的淡水和下部改变了的原生水之间。该模型很好地模拟了观测到的氯和氧-18剖面。白垩系地层盐水的扩散更新已持续约90万年。部分沉积盆地白垩系中的原生水似受到源于其下伏的中生代和古生代沉积物的压实过程中盐水运移的影响。这种作用大约在4百万年前停止。

Resumo

Águas salinas de elevadas concentrações aparecem em muitos locais nos aquíferos regionais Chalk (calcáreo puro) do Noroeste da Europa; para investigar ocorrências profundas, estudaram-se perfis de química da água intersticial de três sondagens de 250–450 m de profundidade na parte leste da Zelândia, Dinamarca. No local estudado, a água salina no Chalk reside a profundidades entre os 40 e os 80 m e a salinidade aumenta com a profundidade. Observaram-se concentrações de cloretos até cerca de 30,000 ppm a profundidades de 400 m. Os potenciais hidráulicos verticais medidos em furos sem revestimento sugerem que, neste momento, o fluxo advectivo da água subterrânea em partes mais profundas da formação Chalk é restrito, e que o transporte difusivo é, portanto, o mecanismo de transporte predominante. Utilizaram-se os coeficientes de porosidade e de difusão efectiva, medidos em laboratório, para entrada num modelo numérico de difusão 1D da interface entre água doce, num aquífero superior fracturado, e água fóssil modificada subjacente. O modelo simulou, de modo satisfatório, os perfis de cloretos e δ18O observados. A renovação difusiva da salinidade na formação Chalk tem estado a decorrer durante os últimos 0.9 milhões de anos. Em partes da bacia sedimentar, a água fóssil no Chalk parece ter sido modificada pelo transporte de águas salgadas provenientes de sedimentos Mesozóicos e Paleozóicos subjacentes, durante a sua compactação, um processo que presumivelmente terá cessado há cerca de 4 milhões de anos.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, The Netherlands

  2. Barker JA (1993) Modelling groundwater flow and transport in the Chalk. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 59–66

  3. Barron EJ, Arthur MA, Kauffman EG (1985) Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate. Earth Planet Sci Lett 72:327–340

  4. Bath AH, Edmunds WM (1981) Identification of connate water in interstitial solution of chalk sediment. Geochim Cosmochim Acta 45:1449–1461

  5. Bear J (1972) Dynamics of fluids in porous media. Elsevier, Amsterdam, 764 pp

  6. Bloomfield J (1996) Characterisation of hydrogeologically significant fracture distributions in the Chalk: an example from the Upper Chalk of southern England. J Hydrol 184(3):355–379

  7. Boving TB, Grathwohl P (2001) Tracer diffusion coefficients in sedimentary rocks: correlation to porosity and hydraulic conductivity. J Contam Hydrol 53(1–2):85–100

  8. Brotzen F (1945) De geologiska resultaten från borrningarna vid Höllviken. Preliminär rapport, Del I: Kritan [The geological results from the boreholes at Hökkviken. Preliminary report, part I: chalk]. Series C, Sveriges Geologiska Undersökning, Uppsala, Sweden, 465 pp

  9. Burdett JW, Grotzinger JP, Arthur MA (1990) Did major changes in the stable-isotope composition of Proterozoic seawater occur? Geology 18:227–230

  10. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York

  11. COMSOL (2009) www.comsol.com. Cited 20 February 2009

  12. Conley DJ, Kaas H, Mohlenberg F, Rasmussen B, Windolf J (2000) Characteristics of Danish estuaries. Estuaries 23(6):820–837

  13. Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure Appl Chem 66(2):273–276

  14. Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta 60(17):3359–3360

  15. Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane: I. oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310

  16. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

  17. Crampon N, Roux JC, Bracq P (1993) France. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 113–152

  18. Dennis F, Andrews JN, Wolf M, Parker A, Poole J (1997) Isotopic and noble gas study of Chalk groundwater in the London Basin, England. Appl Geochem 12:763–773

  19. Descostes M, Blin V, Bazer-Bachi F, Meier P, Grenut B, Radwan J, Schlegel ML, Buschaert S, Coelho D, Tevissen E (2008) Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones (Meuse/Hauet-Marne, France). Appl Geochem 23:655–677

  20. Dickson JAD (2002) Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298:1222–1224

  21. Ditchfield P, Marshall JD (1989) Isotopic variation in rhythmically bedded chalks: paleotemperature variation in the Upper Cretaceous. Geology 17:842–845

  22. Downing RA, Headworth HG (1990) Hydrogeology of the Chalk in the UK: the evolution of our understanding. In: Chalk. Telford, London, pp 555–570

  23. Downing RA, Price M, Jones GP (1993a) The making of an aquifer. In: Downing RA, Price M, Jones GP (eds) The Hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 1–13

  24. Downing RA, Price M, Jones GP (1993b) An aquifer at risk. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 267–273

  25. Easteal AJ, Vernon A, Edge J, Woolf LA (1984) Isotope effects in water: tracer diffusion coefficients for H 2 18 O in ordinary water. J Phys Chem 88:6060–6063

  26. Edmunds WM, Bath AH (1976) Centrifuge extraction and chemical analysis of interstitial waters. Environ Sci Technol 10(5):467–472

  27. Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL, Bath AH, Morgan-Jones M, Andrews JN (1987) Baseline geochemical conditions in the Chalk aquifer, Berkshire, U.K.: a basis for groundwater quality management. Appl Geochem 2:251–274

  28. Egeberg PK, Ågaard P (1989) Origin and evolution of formation waters from oil fields on the Norwegian shelf. Appl Geochem 4:131–142

  29. Elliot T, Chadha DS, Younger PL (2001) Water quality impacts and palaeohydrogeology in the Yorkshire Chalk aquifer, UK. Q J Eng Geol Hydrogeol 34:385–398

  30. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224

  31. Fontes J-C, Matray J-M (1993) Geochemistry and origin of formation brines from the Paris Basin, France, 1: brines associated with Triassic salts. Chem Geol 109:149–175

  32. Foster SSD (1993) The Chalk aquifer: its vulnerability to pollution. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 93–112

  33. Frykman P (2001) Spatial variability in petrophysical properties in Upper Maastrichtian chalk outcrops at Stevns Klint, Denmark. Mar Petrol Geol 18(10):1041–1062

  34. Goody DC, Kinniburgh DG, Barker JA (2007) A rapid method for determining apparent diffusion coefficients in Chalk and other consolidated porous media. J Hydrol 343:97–103

  35. Graf DL, Friedman I, Meents WF (1965) The Origin of saline formation waters, II: isotopic fractionation by shale micropore systems. Circular 393, Illinois State Geological Survey, Des Moines, IL

  36. Gustafsson O (1993) Sweden. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 208–219

  37. Håkansson E, Bromley RG, Perch-Nielsen K (1974) Maastrichtian chalk of north-west Europe: a pelagic shelf sediment. In: Hsû KJ, Jenkyns HC (eds) Pelagic sediment: on land and under the sea. Spec Publ. Int. Assoc. Sediment., vol 1, Int Assoc Sedimentology, Blackwell, Oxford, pp 211–233

  38. Hancock JM (1975) The petrology of the Chalk. Proc Geol Assoc 86:499–535

  39. Hanor JS (1994) Origin of saline fluids in sedimentary basins. Geol Soc Lond Spec Publ 78:151–174

  40. Hanor JS, McIntosh JC (2006) Are secular variations in seawater chemistry reflected in the composition of basinal brines? J Geochem Explor 89:153–156

  41. Hanshaw BB, Coplen TB (1973) Ultrafiltration by a compacted clay membrane: II. sodium ion exclusion at various ionic strengths. Geochim Cosmochim Acta 37:2311–2327

  42. Hay WW, Migdisov A, Balukhovsky AN, Wold CN, Flögel S, Söding E (2006) Evaporites and the salinity of the ocean during the Phanerozoic: implications for climate, ocean circulation and life. Paleogeogr Palaeoclimatol Palaeoecol 240:3–46

  43. Hess AE (1968) Identifying hydraulically conductive fractures with a slow-velocity borehole flowmeter. Can Geotech J 23:69–78

  44. Hill D (1984) Diffusion coefficients of nitrate, chloride, sulphate and water in cracked and uncracked Chalk. J Soil Sci 35:27–33

  45. Hinsby K, Jensen TF, Bidstup T (2003) European reference aquifers: the Limestone aquifers around Copenhagen, Denmark. Report for the EU research project (‘BASELINE’) Natural quality of European groundwater: a basis for aquifer management. Available at http://www.geus.dk/vand-og-data/baseline_hinsby_et_al_2003_limestone.pdf . Cited Feb 2008

  46. Hiscock KM, Dennis PF, Saynor PR, Thomas MO (1996) Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK. J Hydrol 180:79–107

  47. Horita J, Zimmermann H, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66(21):3733–3756

  48. Houmark-Nielsen M (1987) Pleistocene stratigraphy and glacial history of the central part of Denmark. Bull Geol Soc Denmark 36:1–189

  49. Huuse M, Lykke-Andersen H, Michelsen O (2001) Cenozoic evolution of the eastern Danish North Sea. Mar Geol 177:243–261

  50. Huuse M, Lykke-Andersen H, Michelsen O (2002) Reply to comment of P. Japsen et al. on “Cenozoic evolution of the eastern Danish North Sea”. Mar Geol 186:577–581

  51. IAEA (1981) Statistical treatment of environmental isotope data in precipitation. Technical Report Series No. 206, IAEA, Vienna

  52. Jaffres JBD, Shields GA, Wallmann K (2007) The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci Rev 83(1–2):83–122

  53. Japsen P, Bidstup T, Rasmussen ES (2002a) Comment on: “Cenozoic evolution of the eastern Danish North Sea” by M. Huuse, H. Lykke-Andersen and O. Michelsen, [Mar Geol 177:243–269]. Mar Geol 186:571–575

  54. Japsen P, Bidstup T, Lidmar-Bergström K 2002b. Neogene uplift and erosion of southern Scandinavia induced by the rise of the South Swedish Dome. In: Doré AG, Cartwright JA, Stoker MS, Turner JP, White N (eds) Exhumation of the North Atlantic Margin: timing, mechanisms and implications for petroleum exploration. Geol Soc Lond Spec Publ 196:183–207

  55. Japsen P, Green PF, Nielsen LH, Rasmussen ES, Bidstrup T (2007) Mesozoic-Cenozoic exhumation events in the eastern North Sea Basin: a multi-disciplinary study based on paleothermal, paleoburial, stratigrahic, and seismic data. Basin Res 19:451–490

  56. Keys WS (1997) A Practical guide to borehole geophysics in environmental investigations. Lewis, Boca Raton, FL

  57. Kharaka YK, Berry FAF (1973) Simultaneous flow of water and solutes through geological membranes: I. experimental investigation. Geochim Cosmochim Acta 37:2577–2603

  58. Kinniburgh DG, Miles DL (1983) Extraction and chemical analysis of interstitial water from soils and rocks. Environ Sci Technol 17:362–368

  59. Kloppmann W, Dever L, Edmunds WM (1998) Residence time of Chalk groundwaters in the Paris Basin and the North German Basin: a geochemical approach. Appl Geochem 13(5):593–606

  60. Kreitler CW (1989) Hydrogeology of sedimentary basins. J Hydrol 1006:29–53

  61. Labus K (2005) Origin of groundwater mineralization in coarse-grained lower Badenian aquifer in the Czech part of the Upper Silesian Coal Basin. Geol Q 49:75–82

  62. Laier T (1989) Mapping of low enthalpy brines in Denmark for geothermal exploitation. In: Miles (ed) Water–rock interaction. Balkema, Rotterdam, The Netherlands, pp 409–412

  63. Liboriussen J, Ashton P, Tygesen T (1987) The tectonic evolution of the Fennoscandian Border Zone in Denmark. Tectonophysics 137:21–29

  64. Louche B, Crampon N, Bracq P (1998) Quality and behaviour of the chalk aquifer on the Nord-Pas-de-Calais shoreline. CR Acad Sci Ser IIA Earth Planet Sci 327(7):463–470

  65. Lykke-Andersen H, Surlyk F (2004) The Cretaceous-Palaeogene boundary at Stevns Klint, Denmark: inversion tectonics or sea-floor topography? J Geol Soc Lond 161(3):343–352

  66. Madsen HB, Stemmerik L (2009) Early diagenetic Celestine replacement of demosponges in Upper Campanian-Upper Maastrichtian chalk, Stevns, Denamrk. Geology 37(4):355–358

  67. Magara K (1976) Water expulsion from clastic sediments during compaction: directions and volumes. Geol Bull 60(4):543–553

  68. Matray J-M, Fontes J-C (1990) Origin of the oil-field brines in the Paris Basin. Geology 18:501–504

  69. Morgan-Jones M (1977) Mineralogy of the non-carbonate material from the chalk of Berkshire and Oxfordshire, England. Clay Miner 12:331–344

  70. Mortimore RN, Pomerol B (1987) Correlation of the Upper Cretaceous White Chalk (Turonian to Campanian) in the Anglo-Paris Basin. Proc Geol Assoc 98(2):97–143

  71. Nativ R (1996) The brine underlying the Oak Ridge Reservation, Tennessee, USA: characterization, genesis, and environmental implications. Geochim Cosmochim Acta 60(5):787–801

  72. Nielsen LH, Japsen P (1991) Deep wells in Denmark 1935–1990. Lithostratigraphic Subdivision. DGU Series A, no. 31, Geological Survey of Denmark, Copenhagen

  73. Nielsen LH, Larsen F, Frandsen N (1989) Upper Triassic–Lower Jurassic tidal deposits of the Gassum Formation on Sjælland, Denmark. DGU Series_A, no. 23, Geological Survey of Denmark, Copenhagen

  74. Pacey NR (1983) Some Aspects of the Natural Radioactivity of the English Chalk. Modern Geol 8:199–206

  75. Paillet F (2004) Borehole flowmeter applications in irregular and large-diameter boreholes. J Appl Geophys 55:39–59

  76. Pedersen GK (1985) Thin, fine-grained storm layers in a muddy shelf sequence: an example from the Lower Jurassic in the Stenlille well, Denmark. J Geol Soc Lond 142:357–374

  77. Phillips FM, Bentley HW (1987) Isotopic fractionation during ion filtration: I. theory. Geochim Cosmochim Acta 51:683–695

  78. Polak A, Nativ R, Wallach R (2002) Matrix diffusion in northern Negev fractured chalk and its correlation to porosity. J Hydrol 268(1–4):203–213

  79. Price M, Downing RA, Edmunds WM (1993) The Chalk as an aquifer. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 35–58

  80. Rittenhouse G (1967) Bromine in oil-field waters and its use in determining possibilities of origin of these waters. Am Assoc Petrol Geol Bull 51(12):2430–2440

  81. Rosenbom AE, Jakobsen PR (2005) Infrared thermography and fracture analysis of preferential flow in chalk. Vadose Zone J 4:271–280

  82. Rozanski K (1985) Deuterium and Oxygen-18 in European groundwaters: links to atmospheric circulation in the past. Chem Geol 52:349–363

  83. Saindon R, Whitworth TM (2005) Hyperfiltration of NaCl solutions using a simulated clay/sand mixture at low compaction pressures. Aquat Geochem 11:433–444

  84. Schönfeld J (1990) Chloride distribution pattern and fracturing in the white chalk of Lägerdorf/Holstein (NW-Germany): implications for groundwater circulation in the chalk-overburden of a salt-diapir. In: Chalk. Thomas Telford, London, pp 591–596

  85. Sheppard SMF (1986) Characterization and isotopic variations in natural waters. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Reviews in mineralogy volume 16: Stable isotopes in high temperature geological processes. Mineral Soc Am

  86. Smith DB, Downing RA, Monkhouse RA, Otlet RL, Pearson FJ (1976) The age of groundwater in the Chalk of the London Basin. Water Resour Res 12(3):392–404

  87. Spence MJ, Thornton SF, Bottrell SH, Spence KH (2005) Determination of interstitial water chemistry and porosity in consolidated aquifer materials by diffusion equilibrium-exchange. Environ Sci Technol 39:1158–1166

  88. Stage MG (2001a) Magnetic susceptibility as carrier of a climatic signal in chalk. Earth Planet Sci Lett 188(1–2):17–27

  89. Stage MG (2001b) Recognition of cyclicity in the petrophysical properties of a Maastrichtian pelagic chalk oil field reservoir from the Danish North Sea. AAPG Bull Am Assoc Petrol Geol 85(11):2003

  90. Stage MG (2001c) Milankovitch cycles in chalks, Danish North Sea, detected by use of magnetic susceptibility. PhD Thesis, Chalmers University of Technology, Sweden

  91. Stemmerik L, Surlyk F, Klitten K, Rasmussen SL, Schovbo N (2006) Shallow core drilling of the Upper Cretaceous Chalk at Stevns Klint, Denmark. Bull Geol Soc Den 10:13–16

  92. Surlyk F (1997) A cool-water carbonate ramp with Bryozoan mounds: Late Cretaceous-Danian of the Danish Basin. In: James NP, Clarke JDA (eds) Cool-water carbonates. SEPM Spec Publ 56:293–307

  93. Surlyk F, Lykke-Andersen H (2007) Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin. Sedimentology 54:405–422

  94. Sverdrup HU, Johanson MW, Fleming RH (1942) The oceans, their physics, chemistry and general biology. Prentice-Hall, New York

  95. Timofeeff MN, Lowenstein TK, Silva MAM, Harris NB (2006) Secular variation in the major-ion chemistry of seawater: evidence from fluid inclusions in Cretaceous halites. Geochim Cosmochim Acta 70:1977–1994

  96. van Rooijen P (1993) The Netherlands. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the Chalk of North-West Europe. Oxford University Press, New York, pp 170–185

  97. Veizer J, Bruckschen P, Pawellek F, Diener A, Podlaha OG, Carden GAF, Jasper T, Korte C, Strauss H, Azmy K, Ala D (1997) Oxygen isotope evolution of Phanerozoic seawater. Paleogeogr Palaeoclimatol Palaeoecol 132(1–4):159–172

  98. Vejbæk OV, Bidstrup T, Britze P, Erlström M, Rasmussen ES, Sivhed U (2007) Chalk depth structure maps, Central to Eastern North Sea, Denmark. Bull Geol Surv Denmark 13:9–12

  99. Weingärtner H (1982) Self diffusion in liquid water: a reassessment. Zeitschrift Physik Chemie Neue Folge 132:129–149

  100. Whitworth TM, Fritz SJ (1994) Electrolyte-induced solute permeability effects in compacted smectite membranes. Appl Geochem 9:533–546

  101. Williams A, Bloomfield J, Griffiths K, Butler A (2006) Characterising the vertical variations in hydraulic conductivity within the Chalk aquifer. J Hydrol 330(1):53–62

  102. Witthuser K, Reichert B, Hotzl H (2003) Contaminant transport in fractured chalk: laboratory and field experiments. Ground Water 41(6):806–815

  103. Ziegler PA (1990) Geological atlas of Western and Central Europe. Shell International Petroleum Maatschappij BV, The Hague

Download references

Acknowledgements

Drilling of the Stevns 1 and Stevns 2 boreholes was carried out by the Cretaceous Research Centre and financially supported by the Danish Natural Science Research Council (FNU). The water δ18O measurements were kindly supplied by Niels Bohr Institute, Copenhagen University. Per Jensen from (GEUS) is thanked for help with the borehole investigations, and Torben Bidstrup (GEUS) for the discussion of the seismic data from Zealand. We want also to thank John Boserup (GEUS) for help with cutting the chalk cores into manageable sizes for porewater extraction and technicians at the Department of Environmental Engineering, DTU for assisting in setup of the diffusion experiment and analytical analysis. We acknowledge the financial support of Copenhagen Energy and the Danish counties of Copenhagen, Frederiksborg and Roskilde to the project “The saltwater interface in carbonate aquifers in Northeast Zealand” during which the Karlslunde boring and porewater analyses were made. Furthermore, we want to thank Kristoffer Amlani Ulbak, a former Masters student at the Department of Environmental Engineering, DTU, for help with the porewater extraction and chloride analysis of the Karlslunde core. Two anonymous reviewers, the Associate Editor and the Managing Editor are thanked for their constructive reviews, which improved the manuscript significantly.

Author information

Correspondence to Ellen P. Bonnesen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonnesen, E.P., Larsen, F., Sonnenborg, T.O. et al. Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time. Hydrogeol J 17, 1643 (2009). https://doi.org/10.1007/s10040-009-0456-9

Download citation

Keywords

  • Chalk
  • Saltwater/freshwater relations
  • Diffusion
  • Porewater chemistry
  • Denmark