Hydrogeology Journal

, Volume 17, Issue 6, pp 1329–1346 | Cite as

Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

Paper

Abstract

Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system.

Keywords

Bangladesh India Inverse modeling Parameter estimation Geostatistics 

Estimation des proriétés régionales des écoulement souterrains dans le bassin du Bengale en Inde et au Bangladesh

Résumé

L’évaluation quantitative de stratégies de gestion pour la fourniture à long terme d’eau souterraine salubre pour la consommation humaine, à partir de l’aquifère du bassin du Bengale (Inde et Bangladesh), nécessite une estimation des propriétés hydrogéologiques à grande échelle qui contrôlent l’écoulement. Le basin se compose d’une séquence de sédiments hétérogènes stratifiés, où des aquitards peuvent localement séparés des aquifères, mais les éléments connus ne vont pas dans le sens de la présence d’un toit imperméable à l’échelle régionale. Examiné à grande échelle, le bassin peut être pertinemment décrit comme un aquifère unique dont la conductivité hydraulique horizontale est plus forte que la verticale. Même si les données sont éparses, l’estimation des propriétés aquifères à grande échelle est possible à partir de trois types d’information: les charges hydrauliques, les concentrations en 14C, et les logs de forage. L’estimation est réalisée au moyen d’une modélisation inverse à partir des piézométries mesurées, le calage s’appuyant sur les âges estimés à partir du 14C, et de l’analyse statistique des logs de forage. Les trois types de données conduisent à des estimations comparables des conductivités hydrauliques; il en résulte une valeur caractéristique de l’anisotropie verticale (ratio de la conductivité horizontale sur la verticale) de 104. La simulation de l’écoulement au travers de grilles géostatistiques cohérentes avec les données des logs de forage soutient cette évaluation. La valeur élevée de l’estimation de l’anisotropie verticale de conductivité hydraulique indique que même des aquitards déconnectés, s’ils sont nombreux, peuvent fortement contrôler les paramètres hydrauliques équivalents d’un système aquifère.

Estimación de las propiedades de flujo de agua de agua subterránea a escala regional en la cuenca de Bengala en India y Bangladesh

Resumen

La evaluación cuantitativa de estrategias de gestión para el suministro seguro de aguas subterráneas a largo plazo para bebida del acuífero de la Cuenca de Bengala (India y Bangladesh) requiere la estimación de las propiedades hidrogeológicas que a gran escala controlan el flujo. La cuenca está compuesta por una secuencia de sedimentos estratificados heterogéneos con acuitardos que pueden separar localmente a los acuíferos, pero no existen evidencias de la existencia de unidades confinantes regionales. La cuenca, considerada en una gran escala, puede ser adecuadamente descripta como un acuífero simple con la conductividad hidráulica horizontal más alta que la vertical. Aunque los datos son escasos, la estimación de las propiedades del acuífero a escala regional es posible realizarla a partir de tres tipos de datos existentes: las cargas hidráulicas, las concentraciones de 14C y los registros de perforaciones. La estimación es llevada a cabo con la modelación inversa de las aguas subterráneas usando las cargas hidráulicas medidas, por la calibración del modelo usando las edades del agua estimadas en 14C, y por el análisis estadístico de los registros de perforaciones. Estimaciones similares de las conductividades hidráulicas resultan de los tres tipos de datos; un valor típico de la anisotropía vertical (cociente entre la conductividad horizontal y la vertical) es 104. La anisotropía vertical estimada es sostenida por la simulación del flujo a través de campos geoestadísticos consecuentes con los datos de los registros de perforaciones. Los valores altos estimados de anisotropía vertical en la conductividad hidráulica indican que incluso acuitardos desconectados, si son numerosos, pueden controlar fuertemente los parámetros hidráulicos equivalentes de un sistema acuífero.

印度和孟加拉国孟加拉盆地区域尺度上地下水流性质评估

摘要

摘要 定量评价孟加拉盆地含水层 (印度和孟加拉国) 安全饮用地下水长期供应的管理策略, 需先评估控制地下水流动的大尺度水文地质条件。这个盆地由层状的, 非均质沉积序列和可局部分隔含水层的弱透水层组成, 但无证据支持区域性隔水单元的存在。从较大尺度上考虑, 这个盆地更适合描述为一个水平渗透性比垂向渗透性好的单一含水层单元。虽数据稀疏, 区域尺度含水层性质的评估仍可从已有的三种数据进行 : 水头, 14C浓度和钻井记录。评估应用地下水反演模拟, 根据测量水头、地下水14C校正年龄和钻井记录的统计分析进行。基于三种数据对渗透系数进行了类似评估, 得到垂向各向异性的典型值 (水平与垂向渗透系数的比值) 为104。该结果为地质统计场水流模拟与钻井数据相一致所支持。渗透系数较大的垂向各向异性值表明, 即使不连续的弱透水层, 若大量存在, 也可强烈地控制含水层系统的等效水力参数。

Estimativa das propriedades do escoamento subterrâneo à escala regional na bacia de Bengal da India e do Bangladesh

Resumo

A avaliação quantitativa das estratégias de gestão para abastecimento a longo prazo de água subterrânea potável proveniente do aquífero da bacia de Bengal (India e Bangladesh) requer a estimativa das propriedades hidrogeológicas a grande escala que controlam o escoamento. A bacia consiste numa sequência de sedimentos estratificada e heterogénea, com aquitardos que podem localmente separar os aquíferos, mas a evidência não apoia a existência de unidades confinantes regionais. Considerada em grande escala, a bacia pode ser adequadamente descrita como um aquífero único, com condutividade hidráulica horizontal superior à vertical. Apesar dos dados serem esparsos, a estimativa das propriedades do aquífero à escala regional é possível a partir daexistência de três tipos de dados: potenciais hidráulicos, concentrações de 14C, e perfis de sondagens. A estimativa é feita através da modelação inversa de águas subterrâneas utilizando os potenciais medidos, através da calibração de modelo utilizando idades estimadas das águas com base no 14C, e pela análise estatística dos perfis das sondagens. Estimativas semelhantes das condutividades hidráulicas resultam dos três tipos de dados; um valor típico de anisotropia vertical (razão entre a condutividade horizontal e vertical) é 104. A estimativa da anisotropia vertical é apoiada pela simulação de escoamento através de campos geoestatísticos consistentes com dados de perfis de sondagens. O valor estimado elevado para a anistotropia vertical da condutividade hidráulica indica que mesmo os aquitardos não conectados, quando numerosos, podem controlar fortemente os parâmetros hidráulicos equivalentes de um sistema aquífero.

References

  1. Ababou R (1996) Random porous media flow on large 3-D grids: numerics, performance, and application to homogenization. In: Wheeler MF (ed) Environmental studies: mathematical, computational, and statistical analysis. Springer, New York, pp 1–25Google Scholar
  2. Aggarwal PK, Basu AR, Poreda RJ, Kulkarni KM, Froehlich K, Tarafdar SA, Ali M, Ahmed N, Hussain A, Rahman M, Ahmed SR (2000) Isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater. IAEA-TC Project BGD/8/016, IAEA, ViennaGoogle Scholar
  3. Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MAH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200CrossRefGoogle Scholar
  4. Alam MK, Hasan AKMS, Khan MR, Whitney JW (1990) Geological map of Bangladesh. Geological Survey of Bangladesh, DhakaGoogle Scholar
  5. Alam M, Alam MM, Curray JR, Chowdhury MLR, Gani MR (2003) An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sediment Geol 155:179–208CrossRefGoogle Scholar
  6. Allison MA (1998) Geologic framework and environmental status of the Ganges-Brahmaputra Delta. J Coast Res 14(3):826–836Google Scholar
  7. Allison MA, Khan SR, Goodbred SL Jr, Kuehl SA (2003) Stratigraphic evolution of the late Holocene Ganges-Brahmaputra lower delta plain. Sediment Geol 155:317–342CrossRefGoogle Scholar
  8. Begg SH, King PR (1985) Modelling the effects of shales on reservoir performance: calculation of effective vertical permeability, paper SPE 13529 presented at the SPE Reservoir Simulation Symposium, Dallas, TX, 10–13 February 1985Google Scholar
  9. Begg SH, Cheng DM, Haldorsen HH (1985) A simple statistical method for calculating the effective vertical permeability of a reservoir containing discontinuous shales, paper SPE 14271 presented at the 1985 SPE Annual Technical Conference and Exhibition, Las Vegas, NV, 22–25 September 1985Google Scholar
  10. Bethke CM, Johnson TM (2002) Paradox of groundwater age. Geology 30:107–110CrossRefGoogle Scholar
  11. BGS, DPHE (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) British Geologic Survey Report WC/00/19, vols. 1–4, British Geologic Survey, Keyworth, UKGoogle Scholar
  12. BWDB (2002) Upazila-wise tubewell data. Bangladesh Water Development Board, Ground Water Hydrology Division-II, DhakaGoogle Scholar
  13. Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222CrossRefGoogle Scholar
  14. Coleman JM (1969) Brahmaputra River: channel processes and sedimentation. Sediment Geol 3(2–3):129–239CrossRefGoogle Scholar
  15. de Marsily Gh, Delay F, Goncalves J, Renard Ph, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183CrossRefGoogle Scholar
  16. Desbarats AJ (1987) Numerical estimation of effective permeability in sand-shale formations. Water Resour Res 23(2):273–286CrossRefGoogle Scholar
  17. Deshmukh DS, Prasad KN, Niyogi BN, Biswas AB, Guha SK, Seth NN, Sinha BPC, Rao GN, Goswami AB, Rao PN, Narasimhan TN, Jha BN, Mitra SR, Chatterjee D (1973) Geology and groundwater resources of the alluvial areas of West Bengal. Bulletins of the Geological Survey of India, Series B No. 34, Geological Survey of India, New DelhiGoogle Scholar
  18. Devore JL (2000) Probability and statistics for engineering and the sciences. Duxbury, Pacific Grove, CAGoogle Scholar
  19. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New YorkGoogle Scholar
  20. DPHE (1999) Overview, production tube wells, eighteen district towns project phase III. Department of Public Health Engineering, Dhaka, BangladeshGoogle Scholar
  21. DPHE (2006) Final Report on Development of Deep Aquifer Database and Preliminary Deep Aquifer Map (First Phase), Department of Public Health and Engineering, Government of the People’s Republic of Bangladesh, Arsenic Policy Support Unit, and JICA, Dhaka, BangladeshGoogle Scholar
  22. EROS (2002) Shuttle Radar Topography Mission (SRTM) Elevation Data Set. National Aeronautics and Space Administration (NASA), German Aerospace Center (DLR), Italian Space Agency (ASI), From: the National Center for Earth Resources Observations and Science, US Geological Survey, Sioux Falls, SDGoogle Scholar
  23. Fontes J-C, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15(2):399–413CrossRefGoogle Scholar
  24. Goodbred SL Jr, Kuehl SA (2000) The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late quaternary stratigraphy and evolution of the Ganges-Brahmaputra Delta. Sediment Geol 133:227–248CrossRefGoogle Scholar
  25. Goodbred SL Jr, Kuehl SA, Steckler MS, Sarker MH (2003) Controls on facies distribution and stratigraphic preservation in the Ganges-Brahmaputra Delta sequence. Sediment Geol 155:301–316CrossRefGoogle Scholar
  26. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York, 483 ppGoogle Scholar
  27. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process: US Geological Survey Open-File Rep 00–92Google Scholar
  28. Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs. US Geol Surv Open-File Rep 00–184Google Scholar
  29. Hunt RJ, Feinstein DT, Pint CD, Anderson MP (2006) The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, northern Wisconsin, USA. J Hydrol 321:286–296CrossRefGoogle Scholar
  30. Hussain MM, Abdullah SKM (2001) Geological setting of the areas of arsenic safe aquifers. Report of the ground water task force. Interim Report No. 1, Ministry of Local Government, Rural Development & Cooperatives, Local Government Divison, BangladeshGoogle Scholar
  31. JICA (2002) The study on the ground water development of deep aquifers for safe drinking water supply to arsenic affected areas in western Bangladesh. Final report, Kokusai Kogyo, Mitsui, TokyoGoogle Scholar
  32. Johnson SY, Alam AMN (1990) Sedimentation and tectonics of Sylhet Trough, northeastern Bangladesh. US Geol Surv Open-File Rep 90–313Google Scholar
  33. Journel AG, Alabert FG (1990) New method for reservoir mapping. J Pet Technol 42(2):212–218Google Scholar
  34. Keating EH, Robinson BA, Vesselinov VV (2005) Development and application of numerical models to estimate fluxes through the regional aquifer beneath the Pajarito Plateau. Vadose Zone J 4:653–671CrossRefGoogle Scholar
  35. Khan FH (1991) Geology of Bangladesh. Wiley, New Delhi, IndiaGoogle Scholar
  36. Kuehl SA, Allison MA, Goodbred SL, Kudrass H (2005) The Ganges-Brahmaputra Delta: concepts, models, and examples. SEPM Spec Publ 83:413–434Google Scholar
  37. Michael HM, Voss CI (2008) Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. PNAS 105(25):8531–8536CrossRefGoogle Scholar
  38. Michael HM, Voss CI (2009) Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis. Hydrogeol J. doi:10.1007/s10040-008-0429-4
  39. Morgan JP, McIntire WG (1959) Quaternary geology of the Bengal Basin, East Pakistan and India. Bull Geol Soc Am 70:319–342CrossRefGoogle Scholar
  40. MPO (1985) Geology of Bangladesh, Technical Report No. 4, Ministry of Irrigation, Water Development and Flood Control, Dhaka, BangladeshGoogle Scholar
  41. MPO (1987) The groundwater resource and its availability for development, Technical Report No. 5, Ministry of Irrigation, Water Development and Flood Control, Dhaka, BangladeshGoogle Scholar
  42. Naff RL, Haley DF, Sudicky EA (1998) High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media, 1: methodology and flow results. Water Resour Res 34(4):663–677CrossRefGoogle Scholar
  43. Persitz FM, Wandrey CJ, Milici RC, Manwar A (2001) Digital Geologic and Geophysical Data of Bangladesh. US Geol Surv Open File Rep 97–470HGoogle Scholar
  44. Pint CD, Hunt RJ, Anderson MP (2003) Flowpath delineation and ground water age, Allequash Basin, Wisconsin. Ground Water 41(7):895–902CrossRefGoogle Scholar
  45. Poeter EP, Hill MC (1997) Inverse models: a necessary next step in ground-water modeling. Ground Water 35(2):250–260CrossRefGoogle Scholar
  46. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-water flow model. US Geol Surv Open-File Rep 94–464Google Scholar
  47. Rahman AA, Ravenscroft P (2003) Groundwater resources and development in Bangladesh, background to the arsenic crisis, agricultural potential and the environment. University Press, Dhaka, BangladeshGoogle Scholar
  48. Ravenscroft P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol J 14:727–751CrossRefGoogle Scholar
  49. Remy N (2004) The Stanford geostatistical earth modeling software (sgems): a tool for new algorithms development. In: Leuangthong O, Deutsch CV (eds) Geostatistics Banff 2004. Kluwer, Dordrecht, The Netherlands, pp 865–872Google Scholar
  50. Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278CrossRefGoogle Scholar
  51. Sanchez-Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow, Rev Geophys 44, RG3002Google Scholar
  52. Sanford W (1997) Correcting for diffusion in Carbon-14 dating of ground water. Ground Water 35:537–361CrossRefGoogle Scholar
  53. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the middle Rio Grande Basin, USA: 2, calibration of a groundwater-flow model. Hydrogeol J 12:389–407CrossRefGoogle Scholar
  54. Sanz E, Voss CI (2006) Inverse modeling for seawater intrusion in coastal aquifers: insights about parameter sensitivities, variances, correlations and estimation procedures derived from the Henry problem. Adv Water Resour 29(3):439–457. doi:10.1016/j.advwatres.2005.05.014, 439-457
  55. Sarris TS, Paleologos EK (2004) Numerical investigation of the anisotropic hydraulic conductivity behavior in heterogeneous porous media. Stoch Environ Res Risk Assess 18:188–197CrossRefGoogle Scholar
  56. Shamsuddin AHM, Brown TA, Rickard M (2002) Resource studies indicate large gas potential in Bangladesh. Oil Gas J 100(16):48–52Google Scholar
  57. Sikder AM, Alam MM (2003) 2-D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin, Bangladesh. Sediment Geol 155:209–226CrossRefGoogle Scholar
  58. Uddin A, Lundberg N (1999) A paleo-Brahmaputra? Subsurface lithofacies analysis of Miocene deltaic sediments in the Himalayan-Bengal system, Bangladesh. Sediment Geol 123:239–254CrossRefGoogle Scholar
  59. Uddin A, Lundberg N (2004) Miocene sedimentation and subsidence during continent-continent collision, Bengal Basin, Bangladesh. Sediment Geol 164:131–146CrossRefGoogle Scholar
  60. Umitsu M (1993) Late Quaternary sedimentary environments and landforms in the Ganges Delta. Sediment Geol 83:177–186CrossRefGoogle Scholar
  61. van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano J, Hussein I, Ahmed KM (2003) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour Res 39(5), 1140. doi:10.1029/2002WR001617 Google Scholar
  62. Wen X-H, Gomez-Hernandez J (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183(1):ix–xxxiiCrossRefGoogle Scholar
  63. Williamson AK, Grubb HF, Weiss JS (1990) Ground-water flow in the Gulf Coast aquifer systems, south central United States: a preliminary analysis. US Geol Surv Water Resour Invest Rep 89–4071Google Scholar
  64. Zhang Y, Gable CW, Person M (2006) Equivalent hydraulic conductivity of an experimental stratigraphy: implications for Basin-scale flow simulations. Water Resour Res 42, W05404. doi:10.1029/2005WR004720
  65. Zinn BA, Konikow LF (2007) Potential effects of regional pumpage on groundwater age distribution. Water Resour Res 43, W06418. doi:10.1029/2006WR004865

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.Department of Geological Sciences, College of Marine and Earth StudiesUniversity of DelawareNewarkUSA
  2. 2.US Geological SurveyRestonUSA

Personalised recommendations