Hydrogeology Journal

, 17:1561 | Cite as

Controls on groundwater flow in the Bengal Basin of India and Bangladesh: regional modeling analysis

Paper

Abstract

Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions.

Keywords

Bangladesh India Sustainable groundwater management Numerical modeling Regional hydrogeology 

Contrôles de l’écoulement de l’eau souterraine dans le Bassin du Bengale en Inde et au Bengladesh : analyse d’une modélisation régionale

Résumé

L’eau souterraine à usage domestique et destinée à l’irrigation est fournie essentiellement par les parties peu profondes du système aquifère du Bassin du Bengale (Inde et Bengladesh), qui renferme des concentrations élevées en arsenic dissous (dépassant les normes du monde entier pour l’eau potable), alors que l’eau souterraine plus profonde est en général pauvre en arsenic.Une première démarche essentielle pour déterminer la gestion durable de la ressource en eau souterraine profonde est l’identification des contrôles hydrogéologiques de l’écoulement et la quantification des schémas d’écoulement de l’eau souterraine à l’échelle du bassin. Les résultats de la modélisation de l’eau souterraine, dans laquelle le système aquifère du Bassin du Bengale est représenté comme un aquifère unique avec une conductivité horizontale supérieurs à la verticale, indiquent que cette anisotropie est le principal contrôle hydrogéologique des longueurs des lignes d’écoulement naturel. En dépit de gradients hydrauliques extrêmement faibles du fait d’une topographie avec un relief minime, l’anisotropie implique un écoulement à grande échelle (dizaines à centaines de kilomètres) en profondeur. D’autres facteurs hydrogéologiques, incluant des modifications latérales et verticales de la conductivité hydraulique, ont des effets mineurs sur les schémas d’ensemble de l’écoulement. Cependant, parce que les gradients hydrauliques sont faibles, l’impact du pompage sur l’eau souterraine est dévastateur ; la modélisation montre que le pompage a modifié de façon substantielle la ressource en eau souterraine et les directions d’écoulement par rapport aux conditions précédant l’exploitation.

Controles sobre el flujo de agua subterránea en la cuenca de Bengala de India y Bangladesh: análisis de modelado regional

Resumen

El agua subterránea para uso doméstico e irrigación proviene básicamente de las partes poco profundas del sistema acuífero de la cuenca de Bengala (India y Bangladesh), la cual contiene altas concentraciones de arsénico disuelto (que exceden los estándares internacionales para agua potable), aunque el agua subterránea más profunda posee generalmente un contenido bajo en arsénico. Un primer paso esencial para determinar el manejo sustentable del recurso subterráneo profundo es la identificación de los controles hidrogeológicos sobre el flujo y la cuantificación de los esquemas de flujo subterráneo en la escala de la cuenca. Los resultados del modelado de las aguas subterráneas, en el cual el sistema acuífero de la cuenca de Bengala está representado por un acuífero simple con una conductividad hidráulica horizontal mayor que la vertical, indican que esta anisotropía es el control hidrogeológico básico en la trayectoria natural del flujo. A pesar de los extremadamente bajos gradientes hidráulicos debido al relieve topográfico mínimo, la anisotropía implica flujo a gran escala en profundidad (decenas a cientos de kilómetros). Otros factores hidrogeológicos, que incluyen cambios laterales y verticales en la conductividad hidráulica, tienen efectos menores en el esquema global de flujo. Sin embargo, debido a que los gradientes hidráulicos naturales son bajos, el impacto del bombeo sobre el flujo de agua subterránea es abrumador; el modelado indica que el bombeo ha cambiado sustancialmente el balance del agua subterránea poco profunda y los flujos con respecto a las condiciones prevalentes con anterioridad al desarrollo.

孟加盆地地下水流动的控制因素 : 区域模拟分析

摘要

作为生活和灌溉用水的地下水主要取自孟加盆地含水层系统 (印度和孟加拉) 的浅部, 其溶解砷含量较高 (超过世界饮用水标准), 而该含水层深部地下水的砷含量通常较低. 确定深层地下水资源可持续管理方案的第一个必要步骤是查明水文地质条件对水流的控制作用和量化流域尺度的地下水流场. 将孟加拉盆地含水层系统概化为单层含水层, 其水平方向渗透系数大于垂向. 地下水模拟结果表明, 各项异性是控制自然径流路径长度的主要水文地质因素. 尽管由于地形起伏很小导致水力梯度极低, 各项异性预示深部存在大尺度的径流 (数十至数百千米). 其它水文地质因素, 包括渗透系数的横向和垂向变化, 对整个流场影响较小. 但因自然水力梯度小, 抽水对地下水流的影响显著. 模拟表明, 与开采前相比, 抽水已显著改变了浅层地下水的均衡和径流路径.

Controladores do fluxo de água subterrânea na Bacia de Bengala (Índia e Bangladesh): análise de um modelo regional

Resumo

A água subterrânea para fins domésticos e de irrigação é produzida, principalmente, a partir das zonas mais superficiais do sistema aquífero da Bacia de Bengala (Índia e Bangladesh), as quais contém altas concentrações de arsénio dissolvido (excedendo os valores mundiais de referência para a água potável), embora as águas subterrâneas mais profundas apresentem, geralmente, valores mais baixos em arsénio. Um primeiro passo, essencial para a determinação de uma gestão sustentável dos recursos hídricos subterrâneos profundos, é a identificação dos controladores hidrogeológicos do fluxo e a quantificação, à escala da bacia, dos principais fluxos das águas subterrâneas. Os resultados da modelação numérica das águas subterrâneas, em que o sistema aquífero da Bacia de Bengala é representado como um único aquífero, com condutividade hidráulica horizontal maior que a condutividade vertical, indicam que esta é a anisotropia hidrogeológica primária que controla o escoamento subterrâneo. Apesar dos gradientes hidráulicos serem extremamente baixos, devido ao facto do relevo topográfico ser mínimo, a anisotropia implica fluxos em profundidade em larga escala (dezenas a centenas de quilómetros). Outros factores hidrogeológicos, incluindo mudanças laterais e verticais da condutividade hidráulica, têm efeitos menores sobre os padrões globais de fluxo. No entanto, devido aos gradientes hidráulicos naturais serem baixos, o impacte do bombeamento no fluxo subterrâneo é extraordinário; a modelação dos escoamentos indica que o bombeamento mudou substancialmente o balanço hidrológico subterrâneo mais próximo da superfície e os escoamentos, quando comparados com as condições iniciais.

References

  1. Aggarwal PK, Basu AR, Poreda RJ, Kulkarni KM, Froehlich K, Tarafdar SA, Ali M, Ahmed N, Hussain A, Rahman M, Ahmed SR (2000) Isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater. IAEA-TC Project: BGD/8/016, IAEA, ViennaGoogle Scholar
  2. Ahmed KM, Bhattacharya P, Hasan MA, Akhter SH, Alam SMM, Bhuyian MAH, Imam MB, Khan AA, Sracek O (2004) Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: an overview. Appl Geochem 19:181–200CrossRefGoogle Scholar
  3. Ahmed MF, Ahuja S, Alauddin M, Hug SJ, Lloyd JR, Pfaff A, Pichler T, Saltikov C, Stute M, van Geen A (2006) Ensuring safe drinking water in Bangladesh. Science 314:1687–1688CrossRefGoogle Scholar
  4. Ashfaque KN, Harvey CF (2006) Groundwater flow dynamics and arsenic mobilization in Munshiganj, Bangladesh. Geol Soc Am Abstr Programs 38(7):242Google Scholar
  5. BADC (2005) Survey report on irrigation equipment and irrigated area in Boro 2004 season. Survey and Monitoring Project for Development of Minor Irrigation, DhakaGoogle Scholar
  6. Basu AR, Jacobsen SB, Poreda RJ, Dowling CB, Aggarwal PK (2001) Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science 293:1470–1473CrossRefGoogle Scholar
  7. BBS (Bangladesh Bureau of Statistics) (1996) Bangladesh population census, 1991, Statistical Division, Ministry of Planning, BBS, DhakaGoogle Scholar
  8. BGS (British Geological Survey), DPHE (Department of Public Health and Engineering) (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) British Geologic Survey Report WC/00/19, vols 1–4, BGS, KeyworthGoogle Scholar
  9. Bhattacharya P, Welch AH, Ahmed KM, Jacks G, Naidu R (2004) Arsenic in groundwater of sedimentary aquifers. Appl Geochem 19:163–167CrossRefGoogle Scholar
  10. Burgess WG, Burren M, Perrin J, Ahmed KM (2002) Constraints on the sustainable development of arsenic-bearing aquifers in southern Bangladesh. Part 1: A conceptual model of arsenic in the aquifer. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:145–163Google Scholar
  11. BWDB (2002) Upazila-wise Tubewell Data. Ground Water Hydrology Division-II, Bangladesh Water Development Board, DhakaGoogle Scholar
  12. CIA (2006) The world factbook, US Central Intelligence Agency, Washington, DC. https://www.cia.gov/cia/publications/factbook/index.html). Cited April 2006
  13. Curiale JA, Covington GH, Shamsuddin AHM, Morelos JA, Shamsuddin AKM (2002) Origin of petroleum in Bangladesh. AAPG Bull 86(4):625–652Google Scholar
  14. Cuthbert M, Burgess WG, Connell L (2002) Constraints on the sustainable development of arsenic-bearing aquifers in southern Bangladesh. Part 2: Preliminary models of arsenic variability in groundwater. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geol Soc Lond Spec Publ 193:165–179Google Scholar
  15. Deshmukh DS, Prasad KN, Niyogi BN, Biswas AB, Guha SK, Seth NN, Sinha BPC, Rao GN, Goswami AB, Rao PN, Narasimhan TN, Jha BN, Mitra SR, Chatterjee D (1973) Geology and groundwater resources of the alluvial areas of West Bengal. Geol Surv India Bull, Ser B 34:1–451Google Scholar
  16. DWASA (2000) Final report volume 1: model updating, development, and applications. Department of Water Resources Engineering, Institute of Flood Control and Drainage Research, Bureau of Research, Testing, and Consultation, Bangladesh University of Engineering and Technology, DhakaGoogle Scholar
  17. EROS (2002) Shuttle Radar Topography Mission (SRTM) elevation data set. National Aeronautics and Space Administration (NASA), German Aerospace Center (DLR), Italian Space Agency (ASI), From: the National Center for Earth Resources Observations and Science, U.S. Geological Survey, Sioux Falls, SDGoogle Scholar
  18. Government of India (2001) Census of India 2001, West Bengal, Primary Census Abstract (PCA), GOI, New DelhiGoogle Scholar
  19. GSI (1969) Geohydrological map of India, 1st edn., 1:2,000,000. Geological Survey of India, CalcuttaGoogle Scholar
  20. Harbaugh AW (1990) A computer program for calculating subregional water budgets using results from the U.S. Geological Survey modular three-dimensional ground-water flow model. U.S. Geol Surv Open-File Rep 90-392Google Scholar
  21. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. U.S. Geol Surv Open-File Rep 00-92Google Scholar
  22. Harvey CF (2002) Groundwater flow in the Ganges Delta. Science 296:1563ACrossRefGoogle Scholar
  23. Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2002) Arsenic mobility and groundwater abstraction in Bangladesh. Science 298:1602–1606CrossRefGoogle Scholar
  24. Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, M Ali A, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S, Ahmed MF (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136Google Scholar
  25. Hasan MK (1999) The Vulnerability of the Dupi Tila Aquifer, Dhaka, Bangladesh. PhD Thesis, University College, UKGoogle Scholar
  26. Hiller K, Elahi M (1988) Structural growth and hydrocarbon entrapment in the Surma Basin, Bangladesh. In: Wagner HC, Wagner LC, Wang FFH, Wong FL (eds) Petroleum resources of China and related subjects, Circum-Pacific Council for Energy and Mineral Resources Earth Science Series, vol 10, Circum-Pacific Council, Menlo Park, CAGoogle Scholar
  27. Hoque MA, Hoque MM, Ahmed KM (2007) Declining groundwater level and aquifer dewatering in Dhaka metropolitan area, Bangladesh: causes and quantification. Hydrogeol J 15:1523–1534CrossRefGoogle Scholar
  28. JICA (2002) The study on the ground water development of deep aquifers for safe drinking water supply to arsenic affected areas in western Bangladesh. Final report, Kokusai Kogyo Co., Tokyo, Mitsui Mineral Development Engineering Co., TokyoGoogle Scholar
  29. Khan FH (1991) Geology of Bangladesh. Wiley, New Delhi, IndiaGoogle Scholar
  30. Kinniburgh DG, Smedley PL, Davies J, Milne CJ, Gaus I, Trafford JM et al (2003) The scale and causes of the groundwater arsenic problem in Bangladesh. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water: geochemistry and occurrence. Kluwer, Boston, pp 211–257CrossRefGoogle Scholar
  31. Michael HM, Voss CI (2008) Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc Natl Acad Sci 105:8531–8536CrossRefGoogle Scholar
  32. Michael HM, Voss CI (2009) Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh. Hydrogeol J, doi:10.1007/s10040-009-0443-1
  33. Moore WS (1997) High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source. Earth Planet Sci Lett 150:141–150CrossRefGoogle Scholar
  34. Morris BL, Seddique AA, Ahmed KM (2003) Response of the Dupi Tila aquifer to intensive pumping in Dhaka, Bangladesh. Hydrogeol J 11:496–503CrossRefGoogle Scholar
  35. MPO (1985) Geology of Bangladesh, Technical report No. 4, Ministry of Irrigation, Water Development and Flood Control, DhakaGoogle Scholar
  36. MPO (1987) The groundwater resource and its availability for development, Technical report No. 5, Ministry of Irrigation, Water Development and Flood Control, DhakaGoogle Scholar
  37. Mukherjee A (2006) Deeper groundwater flow and chemistry in the arsenic affected Western Bengal Basin, West Bengal, India. PhD Thesis, University of Kentucky, USAGoogle Scholar
  38. Mukherjee A, Fryar AE, Howell PD (2007) Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India. Hydrogeol J 15(7):1397–1418. doi:10.1007/s10040-007-0208-7 Google Scholar
  39. NAMIC (National Arsenic Mitigation Information Centre) and BAMWSP (Bangladesh Arsenic Mitigation Water Supply Project) (2003) National Screening Program 2000–2003. BAMWSP, Dhaka; UNICEF, New York; DANIDA , Copenhagen; WVI, Geneva; WATSAN, Amsterdam, AAN, DhakaGoogle Scholar
  40. Pollock DW (1994) User’s Guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. U.S. Geol Surv Open-File Rep 94-464Google Scholar
  41. Rahman AA, Ravenscroft P (2003) Groundwater resources and development in Bangladesh, background to the arsenic crisis, agricultural potential and the environment. The University Press, DhakaGoogle Scholar
  42. Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In: Chappell WR, Abernathy CO, Calderon R (eds) Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. Proceedings of the 4th International Conference on Arsenic Exposure and Health Effects, San Diego, June 2000, Elsevier, OxfordGoogle Scholar
  43. SWID (2003) Government of West Bengal, Third Minor Irrigation Census (2000–2001) in West Bengal, SWID, Calcutta, 192 ppGoogle Scholar
  44. Toth J (1970) A conceptual model of the groundwater regime and the hydrogeologic environment. J Hydrol 10:164–176CrossRefGoogle Scholar
  45. Uddin A, Lundberg N (2004) Miocene sedimentation and subsidence during continent-continent collision, Bengal basin, Bangladesh. Sediment Geol 164:131–146CrossRefGoogle Scholar
  46. van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano J, Hussein I, Ahmed KM (2003) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour Res 39:5. doi:10.1029/2002WR001617 Google Scholar
  47. van Geen A, Zheng Y, Cheng Z, Aziz Z, Horneman A, Dhar RK, Mailloux B, Stute M, Weinman B, Goodbred S, Seddique AA, Hoque MA, Ahmed KM (2006) A transect of groundwater and sediment properties in Araihazar, Bangladesh: further evidence of decoupling between As and Fe mobilization. Chem Geol 228:85–96CrossRefGoogle Scholar
  48. WARPO (Water Resources Planning Organization) (2000) National Water Management Plan Project: draft development strategy. Ministry of Water Resources, Government of the People’s Republic of Bangladesh, DhakaGoogle Scholar
  49. Winston RB (2000) Graphical user interface for MODFLOW, version 4. U.S. Geol Surv Open-File Rep 00-315Google Scholar
  50. Yu WH, Harvey CM, Harvey CF (2003) Arsenic in the groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour Res 39:6CrossRefGoogle Scholar
  51. Zheng Y, van Geen A, Stute M, Dhar R, Mo Z, Cheng Z, Horneman A, Gavrieli I, Simpson HJ, Versteeg R, Steckler M, Grazioli-Venier A, Goodbred S, Shahnewaz M, Shamsudduha M, Hoque MA, Ahmed KM (2005) Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim Cosmochim Acta 69:5203–5218CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Geological Sciences, College of Marine and Earth StudiesUniversity of DelawareNewarkUSA
  2. 2.U.S. Geological Survey431 National CenterRestonUSA

Personalised recommendations