Hydrogeology Journal

, Volume 17, Issue 3, pp 505–517 | Cite as

Mapping an aquitard breach using shear-wave seismic reflection

Paper
  • 114 Downloads

Abstract

In multi-layered hydrostratigraphic systems, aquitard breaches caused by faulting or paleo-erosion can allow substantial quantities of water of differing quality to be exchanged between aquifers. Seismic reflection technology was used to map the extent and orientation of an aquitard breach connecting a shallow alluvial aquifer to the deeper semi-confined Memphis aquifer in southwestern Tennessee, USA. Geophysical well logs indicate the presence of the aquitard at borehole locations that define the beginning and end points on two seismic survey lines, which intersect at a borehole where the aquitard is absent. A SE–NW-oriented paleochannel, 350 m wide and approximately 35–40 m deep, is interpreted from the seismic reflection surveys. The paleochannel cuts through the aquitard and into the upper part of the Memphis aquifer, thus creating a hydraulic connection between the shallow unconfined and deeper, semi-confined aquifers. The results indicate the potential of the shear-wave seismic reflection methods to resolve shallow breaches through fine-grained aquitards given availability of sufficient well control.

Keywords

Groundwater flow Confining units Breach Seismic reflection USA 

Cartographie d’une brèche aquitarde par l’utilisation de la sismique réflexion des ondes de cisaillement

Résumé

Dans les systèmes hydrostatiques multicouches, les brèches aquitardes créés par des failles ou de la paléo-érosion, permettent à des quantités importantes d’eau de qualité variable de circuler entre différents aquifères. La sismique réflexion a été utilisée pour cartographier l’étendue et l’orientation de ces brèches aquitardes connectant un aquifère alluvial superficiel et l’aquifère profond semi-captif de Memphis situés dans le sud-ouest du Tennessee aux Etats-Unis. Des diagraphies indiquent la présence de l’aquitard dans des forages situés au début et à la fin de deux lignes d’exploration sismique dont l’intersection au niveau d’un forage ne présente pas de niveaux aquitards. Un paléo chenal orienté SE-NW, de 350 mètres de large et approximativement 35 à 40 mètres de profondeur a été déterminé par sismique réflexion. Le paléo chenal coupe l’aquitard et la partie supérieure de l’aquifère de Memphis créant ainsi une connexion hydraulique entre les alluvions libres et l’aquifère profond et semi-captif. Les résultats montrent le potentiel d’utilisation de la méthode de sismique réflexion des ondes de cisaillement pour caractériser avec suffisamment de précision les brèches peu profondes d’aquitards poreux.

Mapeo de la ruptura de un acuitardo usando la onda de corte (transversal) de la sísmica de reflexión

Resumen

En un sistema hidroestratigráfico multicapas, la ruptura de un acuitardo causada por fallamiento o paleo erosión puede permitir que cantidades significativas de agua de diferentes calidad puedan intercambiarse entre los acuíferos. La tecnología de sísmica de reflexión fue usada para mapear la extensión y orientación de la ruptura de un acuitardo que conecta un acuífero somero aluvial con un acuífero más profundo semiconfinado Memphis, en el sudoeste de Tennessee, EE.UU. Los registros geofísicos de pozos indican la presencia de un acuitardo en los sitios perforados que definen los puntos de comienzo y final en dos líneas de relevamiento sísmico, que se intersectan en un pozo donde el acuitardo está ausente. A partir de los relevamientos de sísmica de reflexión es interpretado un paleocanal de orientación SE-NO, de 350 metros de ancho y aproximadamente de 35 a 40 m de profundidad. El paleocanal atraviesa el acuitardo en la parte superior del acuífero Memphis, creando de esa manera una conexión hidráulica entre los acuíferos no confinados someros y semi-confinado más profundo. Los resultados indican las posibilidades que tiene el método de reflexión sísmica de onda de corte (transversal) para resolver rupturas someras a través de acuitardos de grano fino, dada la disponibilidad de un adecuado control de pozo.

应用剪切波地震反射测绘弱透水层天窗

摘要

在多层含水层系统中, 来自不同含水层的水质不同的水可通过断层或由古侵蚀作用在弱透水层上形成的天窗发生可观的水量交换。本文应用地震反射技术测绘美国田纳西州西南部某连通一个浅部冲积含水层和深部孟斐斯半承压含水层的弱透水层天窗的展布和走向。地球物理测井显示, 地震反射测量可以反映弱透水层的起止点, 而在一个没有弱透水层的钻孔中两线反射线相交。根据地震反射勘查解译出了一个SE-NW走向、宽350 m、深约35–40 m的古河道。古河道切穿弱透水层抵至孟斐斯含水层上部, 造成了浅部非承压含水层和深部半承压含水层间的水力联系。结果表明, 在有足够的控制井的情况下, 应用剪切波地震反射方法可对穿过细粒弱透水层的浅部天窗进行充分控制。

Cartografia de uma descontinuidade num aquitardo com recurso ao método de reflexão sísmica por ondas de corte

Resumo

Em sistemas hidrostratigráficos multicamada, as descontinuidades causadas por falhamento ou paleoerosão podem permitir a transferência entre aquíferos de quantidades substanciais de água de qualidade diferenciada. No sudoeste do Tennessee, Estados Unidos da América, a tecnologia de reflexão sísmica foi usada para cartografar a extensão e a orientação de uma descontinuidade num aquitardo intercalado entre um aquífero aluvial superficial e o aquífero Memphis, mais profundo e semi-confinado. Perfis geofísicos em furos mostram a presença do aquitardo nas sondagens que definem o início e o fim de dois perfis sísmicos que se intersectam numa outra sondagem onde o aquitardo está ausente. A partir dos perfis sísmicos de reflexão interpretou-se um paleocanal com 350 m de largura e aproximadamente 35 a 40 m de profundidade. O paleocanal corta o aquitardo e atinge a parte superior do aquífero Memphis, estabelecendo assim uma conexão hidráulica entre o aquífero livre superficial e os aquíferos semi-confinados mais profundos. Os resultados mostram o potencial do método sísmico de reflexão por ondas de corte para a identificação de descontinuidades pouco profundas em aquitardos de granulometria fina, desde que se disponha de suficiente controlo por sondagens.

References

  1. Baker GS (1999) Processing near-surface seismic-reflection data: a primer, (Course Notes Series No. 9). Society of Exploration Geophysicists, Tulsa, OKGoogle Scholar
  2. Bell EA, Nyman DJ (1968) Flow pattern and related chemical quality of ground water in the “500-foot” sand in the Memphis area, Tennessee. US Geol Surv Water Suppl Pap 1853, 27 ppGoogle Scholar
  3. Black RA, Steeples DW, Miller RD (1994) Migration of shallow seismic reflection data. Geophysics 59:402–410CrossRefGoogle Scholar
  4. Bradley MW (1988) Construction, geologic, and ground-water data for observation wells near the Shelby County landfill, Memphis, Tennessee. U.S. Geol Surv Open File Rep 88-486, 32 ppGoogle Scholar
  5. Bradley MW (1991) Ground-water hydrology and the effects of vertical leakage and leachate migration on ground-water quality near the Shelby County landfill, Memphis, Tennessee. US Geol Surv Water Resour Invest Rep 90-4075, 42 ppGoogle Scholar
  6. Bradley E, Phatare PN (1989) Paloehydrology affecting recharge to overexploited semiconfined aquifers in the Mehsana area, Hujarat State, India. J Hydrol 108:309–322CrossRefGoogle Scholar
  7. Brahana JV, Broshears RE (2001) Hydrogeology and ground-water flow in the Memphis and Fort Pillow aquifers in the Memphis area, Tennessee. US Geol Surv Water Resour Invest Report 89-4131, 56 ppGoogle Scholar
  8. Broughton AT, Van Arsdale RB, Broughton JH (2001) Liquefaction susceptibility mapping in the City of Memphis and Shelby County, Tennessee. Eng Geol 62:207–222CrossRefGoogle Scholar
  9. Carmichael JK, Parks WS, Kingsbury JA, Ladd DE (1997) Hydrogeology and ground-water quality at the Naval Support Activity Memphis, near Millington, Tennessee. US Geol Surv Water Resour Invest Rep 97-4158:1–64Google Scholar
  10. Cramer C (2005) Geotech. In: Memphis-Shelby County Hazard Mapping Project Site Response Data. Center for Earthquake Research and Information, Memphis, TN. http://www.ceri.memphis.edu/geotech/. Cited 15 December 2005
  11. Criner JH, Sun P-CP, Nyman DJ (1964) Hydrology of aquifer systems in the Memphis area, Tennessee. US Geol Surv Water Suppl Pap 1779-O, 53 ppGoogle Scholar
  12. Cushing EM, Boswell EH, Speer PR, Hosman RL (1964) Water resources of the Mississippi embayment: availability of water in the Mississippi embayment. US Geol Surv Prof Pap 448-A, 13 ppGoogle Scholar
  13. Gentry RW (1998) The development of a genetic algorithm technique to solve the inverse ground water problem associated with accretion to a semi-confined aquifer. PhD Thesis, University of Memphis, USAGoogle Scholar
  14. Gentry RW, Larsen D, Ivey SS (2003) Efficacy of genetic algorithm to investigate small scale aquitard leakage. J Hydraul Eng 129:527–535CrossRefGoogle Scholar
  15. Gentry RW, Ku T-L, Luo S, Todd V, Larsen D, McCarthy JF (2006a) Resolving Aquifer Behavior Near a focused recharge feature based upon synoptic wellfield hydrogeochemical tracer results. J Hydrol 323:387–403CrossRefGoogle Scholar
  16. Gentry RW, McKay L, Thonnard N, Anderson JL, Larsen D, Carmichael JK, Solomon K (2006b) Novel techniques for investigating recharge to the Memphis aquifer. American Water Works Association, Denver, CO, 97 ppGoogle Scholar
  17. Gerber RE, Howard KW (1996) Evidence for recent groundwater flow through Late Wisconsinan till near Toronto, Ontario. Can Geotech J 33:538–555CrossRefGoogle Scholar
  18. Goforth T, Hayward C (1992) Seismic reflection investigation of a bedrock surface buried under alluvium. Geophysics 57:1217–1227CrossRefGoogle Scholar
  19. Graham DD, Parks WS (1986) Potential leakage among principal aquifers in the Memphis area, Tennessee. US Geol Surv Water Resour Invest Rep 85-4295, 45 ppGoogle Scholar
  20. Hammer P, Clowes RM, Ramachandran K (2004) Seismic reflection imaging of thin, kimberlite dykes and sills: exploration and deposit characterization of the Snap Lake dyke, Canada. Lithos 76:359–367CrossRefGoogle Scholar
  21. Harris JB, Berman SA, Beard WC, Street RL (1998) Shallow seismic reflection investigations of neotectonic activity in the Lower Mississippi Valley. Paper presented at the 68th Annual International Meeting of the Society of Exploration Geophysicists, New Orleans, LA, 14–18 September 1998Google Scholar
  22. Harris JB, Miller RD, Xia J, Hunter JA, Park CB, Laflen DR, Good RL (2000) Near-surface shear wave reflection surveys in the Fraser River delta, BC Canada. 70th Annual International Meeting of the Society of Exploration Geophysicists, SEG, Tulsa, OK, extended abstracts, pp 1327–1330Google Scholar
  23. Hasbrouck WP (1991) Four shallow-depth, shear-wave feasibility studies. Geophysics 56:1875–1885CrossRefGoogle Scholar
  24. Ivey SS (2003) The development of a combined age distribution and inverse technique to identify wellhead protection zones for a semi-confined aquifer. PhD Thesis, University of Memphis, USAGoogle Scholar
  25. Jensen JB, Kuijpers A, Bennike O, Laier T, Werner F (2002) New geological aspects for freshwater seepage and formation in Eckernforde Bay, western Baltic. Cont Shelf Res 22:2159–2173CrossRefGoogle Scholar
  26. Larsen D, Gentry RW, Solomon DK (2003a) The geochemistry and mixing of leakage in a semi-confined aquifer at a municipal well field. Appl Geochem 18:1043–1063CrossRefGoogle Scholar
  27. Larsen D, Gentry RW, Ivey S, Solomon DK, Harris JB (2003b) Groundwater leakage through a confining unit beneath a municipal well field, Memphis, Tennessee, USA. In: Schulz HD, Hadeler A (eds) Geochemical processes in soil and groundwater. Wiley, BerlinGoogle Scholar
  28. Larsen D, Spann EW, McClure DM, Gentry R (2003c) Selected sediment properties of Quaternary deposits, Shelby County, Tennessee: implications for contaminant hydrogeology and Quaternary stratigraphy. Southeast Geol 42:99–110Google Scholar
  29. Martin PJ, Frind EO (1998) Modeling a complex multi-aquifer system: the Waterloo Moraine. Ground Water 36:679–690CrossRefGoogle Scholar
  30. Merey C, Miller RD, Ticken EJ, Lewis JS (1992) Hydrogeologic characterization using a shallow seismic reflection survey at Ford Ord, California. Soc Explor Geophys 1:370–373Google Scholar
  31. Miller RD, Xia J, Deane JW, Anderson JM, Laflen DR, Acker PM, Brohammer MC (1994) High resolution seismic reflection survey to image the top and bottom of a shallow clay layer at the Memphis Defense Depot, Memphis, Tennessee. US Army Corps Eng Open File Rep 94–18, 17 ppGoogle Scholar
  32. Miller RD, Xia J, Park CB, Ivanov JM (1999) Multichannel analysis of surface waves to map bedrock. The Leading Edge 18(12):1392–1396Google Scholar
  33. Ng YG (1993) Ground water modeling at the Shelby County landfill, Memphis, Tennessee. MSc Thesis, University of Memphis, USAGoogle Scholar
  34. Parks WS (1990) Hydrogeology and preliminary assessment of the potential for contamination of the Memphis aquifer in the Memphis area, Tennessee. US Geol Surv Water Resour Invest Rep 90-4092, 39 ppGoogle Scholar
  35. Parks WS, Carmichael JK (1990) Geology and ground-water resources of the Memphis Sand in western Tennessee. US Geol Surv Water Resour Invest Rep 88-4182, 30 ppGoogle Scholar
  36. Parks WS, Mirecki JE (1992) Hydrogeology, ground-water quality, and potential for water-supply contamination near the Shelby County landfill in Memphis, Tennessee. US Geol Surv Water Resour Invest Rep 91-4173, 79 ppGoogle Scholar
  37. Parks WS, Mirecki JE, Kingsbury JA (1995) Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee. US Geol Surv Water Resour Invest Rep 94-4212, 58 ppGoogle Scholar
  38. Pell AB, Harris JB, Waldron BA (2005) Seismic reflection imaging of suspected “windows” in the upper confining unit of the Memphis (Tennessee) Aquifer. Paper presented at the 18th Annual Meeting, Symposium on the Application of Geophysics to Engineering and Environmental Problems, Atlanta, GA, 3–7 April 2005Google Scholar
  39. Sharpe DR, Pugin A, Pullan SE, Gorrell G (2003) Application of seismic stratigraphy and sedimentology to regional hydrogeological investigations: an example from Oak Ridges Moraine, southern Ontario, Canada. Can Geotech J 40:711–730CrossRefGoogle Scholar
  40. Shtivelman V, Goldman M (2000) Integration of shallow reflection seismics and time domain electromagnetics for detailed study of the coastal aquifer in the Nitzanim area of Israel. J Appl Geophys 44:197–215CrossRefGoogle Scholar
  41. Suyama K, Imai T, Ohtomo H, Ohta K, Takahashi T (1987) Delineation of structures in alluvium and diluvium using SH-wave reflection and VSP methods. In: Shear-wave exploration, vol 1. Society of Exploration Geophysicists, Tulsa, OK, pp 165–179Google Scholar
  42. Timms W, Acworth RI (2002) Origin, lithology and weathering characteristics of upper tertiary-quaternary clay aquitard units on the Lower Murrumbidgee alluvial fan. Aust J Earth Sci 49:525–537CrossRefGoogle Scholar
  43. Van Arsdale RB, TenBrink RK (2000) Late Cretaceous and Cenozoic geology of the New Madrid seismic zone. Seismol Soc Am Bull 90:345–356CrossRefGoogle Scholar
  44. van Dijk DC, Talsma T (1964) Soils of portion of the Coleambally Irrigation Area, NSW. CSIRO Soils and Landuse Series 47, CISRO, Clayton South, AustraliaGoogle Scholar
  45. Velasco M, Van Arsdale R, Waldron B, Harris J, Cox R (2005) Quaternary faulting beneath Memphis, Tennessee. Seismol Res Lett 776:598–614CrossRefGoogle Scholar
  46. Watson DF, Philip GM (1984) Triangle based interpolation. Math Geol 16:779–795CrossRefGoogle Scholar
  47. Young RA, Hoyos J (2001) Near-surface, SH-wave surveys in unconsolidated, alluvial sediments. The Leading Edge 20:936–948CrossRefGoogle Scholar
  48. Zuber A, Weise SM, Osenbruck K, Pajnowska H, Grabezak J (2000) Age and recharge pattern of water in the Oligocene of the Mazovian basin (Poland) as indicated by environmental tracers. J Hydrol 233:174–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • B. A. Waldron
    • 1
  • J. B. Harris
    • 2
  • D. Larsen
    • 3
  • A. Pell
    • 4
  1. 1.Department of Civil EngineeringUniversity of MemphisMemphisUSA
  2. 2.Department of GeologyMillsaps CollegeJacksonUSA
  3. 3.Department of Earth SciencesUniversity of MemphisMemphisUSA
  4. 4.Department of Geology and GeophysicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations