Advertisement

Hydrogeology Journal

, Volume 17, Issue 4, pp 827–842 | Cite as

Groundwater monitoring in Denmark: characteristics, perspectives and comparison with other countries

  • Lisbeth Flindt Jørgensen
  • Jens Stockmarr
Report

Abstract

More than 99% of water use in Denmark is based on groundwater. Denmark has had a comprehensive national groundwater-monitoring programme since 1988 based on 74 well catchment areas and six small agricultural catchments with more than 1,500 screens at different depths for regular, mostly annual, water quality sampling. In addition, water samples from 10,000 abstraction wells are analysed every 3–5 years. The water is analysed for main components, inorganic trace elements, organic micro pollutants, and pesticides and their metabolites. A unique feature is the 20-year time-series data of inorganic pollutants. Groundwater modelling supports traditional monitoring to improve the conceptual geological understanding and to assess the quantitative status and the interaction between groundwater and surface water. The programme has been continuously adjusted to incorporate new knowledge from research programmes and meet new policy demands, currently the European Union Water Framework Directive, particularly with respect to an increased focus on quantitative aspects and on the groundwater/surface water interaction. The strengths and weaknesses of the Danish programme are assessed and compared with other national groundwater-monitoring programmes. Issues discussed include: strategic considerations for monitoring design, the link between research and monitoring, and adoption of responses to climate changes.

Keywords

Groundwater monitoring Groundwater development Groundwater quality Denmark EU water framework directive 

Suivi des eaux souterraines au Danemark : caractéristiques, perspectives et comparaison avec d’autres pays

Résumé

Plus de 99% des eaux utilisées au Danemark proviennent des eaux souterraines. Le Danemark a mis sur pieds un programme national de suivi des eaux souterraines depuis 1988, comprenant 74 bassins d’alimentation de captage et six petits bassins agricoles avec plus de 1500 piézomètres de différentes profondeurs permettant des échantillonnages de la qualité de l’eau à un pas de temps régulier, annuel essentiellement. De plus, les échantillons d’eau prélevés sur les 10 000 forages d’exploitation sont analysés tous les 3 à 5 ans. Les éléments principaux sont analysés ainsi que les éléments traces, les micropolluants organiques ainsi que les pesticides et leurs métabolites. Une série chronologique d’une durée de 20 ans est disponible pour les polluants inorganiques. La modélisation hydrogéologique est un outil complémentaire au suivi des eaux souterraines afin d’améliorer la compréhension du modèle conceptuel géologique et d’évaluer l’état quantitatif ainsi que les interactions entre les eaux souterraines et les eaux de surface. Le programme a été constamment adapté afin d’insérer les nouvelles connaissances issues des programmes de recherche ainsi que les nouvelles demandes en matière de politiques de l’eau associées à la directive cadre européenne sur l’eau et notamment celles relatives aux questions des relations quantitatives entre les eaux souterraines et les eaux de surface. Les forces et faiblesses du programme danois ont été évaluées et comparés à d’autres programmes nationaux de suivi des eaux souterraines. Les thématiques discutées comprennent des éléments stratégiques pour la conceptualisation de réseaux de suivi, les relations entre la recherche et les programmes de suivi et l’adaptation de ceux-ci en réponse aux changements climatiques.

Monitoreo de aguas subterráneas en Dinamarca: características, perspectivas y comparación con otros países

Resumen

En Dinamarca más del 99% del uso de agua se basa en aguas subterráneas. Dinamarca cuenta con un programa nacional de monitoreo integral de las aguas subterráneas en base a 74 áreas de captación de pozos y seis cuencas agrícolas pequeñas con más de 1500 pozos con filtros a distintas profundidades para el muestreo regular, en la mayoría de los casos anual, de la calidad del agua. Además se incluyen muestras de agua obtenidas de 10000 pozos de explotación pozos que se analizan cada 3 a 5 años. Los análisis de agua incluyen a los componentes principales, oligoelementos, microorganismos contaminantes orgánicos y plaguicidas y sus metabolitos. Los datos de contaminantes inorgánicos de una serie de tiempo de 20 años constituye una característica especial de este programa. El monitoreo es apoyado por modelos tradicionales de aguas subterráneas para mejorar la compresión del modelo geológico conceptual y para evaluar cuantitativamente el estado y la interacción entre subterráneas y superficiales. El programa ha sido continuamente ajustado para incorporar nuevos conocimientos de programas de investigación y atender a nuevas exigencias políticas, como es actualmente la Directiva Marco de la Unión Europea, en particular con respecto a una mayor atención sobre los aspectos cuantitativos y sobre la interacción aguas subterráneas/aguas superficiales. Las fortalezas y debilidades del programa danés son evaluados y comparados con otros programas nacionales de monitoreo de las aguas subterráneas. Los temas discutidos incluyen: consideraciones estratégicas para el diseño del monitoreo, la asociación entre la investigación y el monitoreo, y la adaptación de las respuestas a los cambios climáticos.

丹麦的地下水监测——特征、展望以及与其它国家的对比

摘要

丹麦超过99%的用水依赖于地下水。丹麦自1988年开始实施一项全面的全国地下水监测计划。该方案以74个井流域和6个小型农业流域为基础, 对1500多个处于不同深度的滤管段进行多为每年一次的常规水质定期取样分析。此外, 每隔3–5年还要对取自10000眼抽水井的水样进行分析。分析项目包括水样中的主要组分、无机痕量元素、有机微量污染物、杀虫剂及其代谢产物。一个特色是保存有20年无机污染物时间序列数据。传统监测结合地下水模拟, 可以改进对地质条件的概念性认识、评估水量状况及地表水和地下水之间的相互作用。该方案不断调整, 以吸收来自研究项目的新成果和满足新的政策要求——目前为欧盟水资源框架指导意见, 特别是针对日益关注的量的方面和地下水/地表水相互作用。文章评价了丹麦监测计划的优缺点, 并将其同其它国家的地下水监测计划进行了对比。所探讨的问题有 : 监测方案设计的战略考虑、科学研究与监测之间的关系和如何将气候变化响应的内容纳入监测中。

Monitorização da água subterrânea na Dinamarca: características, perspectivas e comparação com outros países

Resumo

Mais de 99% da água utilizada na Dinamarca é de origem subterrânea. A Dinamarca tem um programa nacional abrangente de monitorização de água subterrânea desde 1988, com base em 74 bacias de contribuição para furos e seis pequenas bacias agrícolas, com mais de 1500 tubos-ralos situados a diferentes profundidades que são destinados a amostragem regular, maioritariamente anual, da qualidade da água. Complementarmente, a cada 3–5 anos, são analisadas amostras de água recolhidas em 10000 captações. São analisados os elementos maiores, oligoelementos inorgânicos, micro-poluentes orgânicos e pesticidas e seus metabolitos. De realçar a existência de uma série temporal de dados de poluentes inorgânicos com 20 anos. A modelação da água subterrânea suporta a monitorização tradicional com o objectivo de melhorar a compreensão do modelo geológico conceptual e para avaliar o estado quantitativo e a interacção entre a água subterrânea e a superficial. O programa tem sido continuamente ajustado para incorporar novos conhecimentos resultantes de projectos de investigação e para responder a novas necessidades políticas, actualmente sob a égide da Directiva Quadro da Água da União Europeia e, em particular, a maior atenção dada aos aspectos quantitativos e à interacção entre águas subterrâneas/águas superficiais. Os pontos fortes e fracos do programa dinamarquês são avaliados e comparados com outros programas nacionais de monitorização de águas subterrâneas em outros países. Entre as várias questões discutidas neste trabalho salientam-se: considerações estratégicas para a concepção do plano de monitorização, a ligação entre a investigação e a monitorização e a adopção de medidas para responder às alterações climáticas.

Grundvandsovervågning i Danmark – karakteristika, perspektiver og sammenligning med andre lande

Resumé

I Danmark er mere end 99% af vandforbruget baseret på grundvand og vi har siden 1988 haft et solidt nationalt overvågningsprogram baseret på 74 grundvandsovervågningsområder og 6 landovervågningsoplande med i alt mere end 1500 filtre i varierende dybde til regelmæssige prøvetagning, hovedsagelig én gang årligt. Derudover analyserer vandværkerne grundvandsprøver fra deres indvindingsboringer hvert 3 til 5 år. Der analyseres for hovedkomponenter, uorganiske sporstoffer og tungmetaller, organiske mikro-forureninger samt pesticider og deres nedbrydningsprodukter og der kan findes tidsserier på helt op til 20 år for uorganiske forureninger. Grundvandsmodellering understøtter overvågningen, idet den konceptuelle forståelse af geologien forbedres, og samtidig muliggøres vurderinger af den kvantitative status samt interaktionen mellem grundvand og overfladevand. Grundvandsovervågningsprogrammet er løbende blevet justeret og tilpasset ny viden og administrative krav, senest det Europæiske Vandrammedirektiv, især under hensyntagen til den stigende fokus på de kvantitative forhold og på udvekslingen mellem grundvand og overfladevand. Det danske program sammenlignes med andre nationale grundvandsovervågningsprogrammer, og styrker og svagheder diskuteres, herunder strategiske overvejelser med hensyn til design af overvågning, kobling mellem forskning og overvågning samt tilpasning til konsekvenser af klimaændringer.

Grundwasser-Monitoring in Dänemark: Eigenschaften, Perspektiven und Vergleich mit anderen Ländern

Zusammenfassung

Mehr als 99% der Wassernutzung in Dänemark basieren auf Grundwasser. Seit 1988 hat Dänemark ein umfassendes nationales Monitoring-Programm für Grundwasser. Grundlage dafür bilden 74 Quelleinzugsgebiete und sechs kleine landwirtschaftlich genutzte Einzugsgebiete mit mehr als 1500 Messstellen in unterschiedlichen Tiefen für die regelmäßige, zumeist jährliche Erhebung der Wasserqualität. Darüber hinaus werden Wasserproben von 10000 Entnahmestellen alle 3–5 Jahre analysiert. Das Wasser wird in Hinblick auf seine Hauptbestandteile, anorganische Spurenelemente, organische Mikroschadstoffe sowie Pestizide und ihre Zwischenprodukte untersucht. Ein einmaliges Charakteristikum ist die zwanzigjährige Zeitreihe mit Daten zu anorganischen Schadstoffen. Grundwasser-Modellierung unterstützt traditionelles Monitoring dabei, das konzeptionelle geologische Verständnis zu verbessern und den mengenmäßigen Zustand des Grundwassers sowie seine Wechselwirkungen mit dem Oberflächenwasser einzuschätzen. Das Programm wird laufend angepasst, um neue Forschungserkenntnisse einzubeziehen und neuen Anforderungen der Politik zu entsprechen. Derzeit ist dies die EU-Wasserrahmenrichtlinie, insbesondere hinsichtlich eines größeren Schwerpunkts auf quantitativen Aspekten sowie Wechselwirkungen zwischen Grund- und Oberflächenwasser. Die Stärken und Schwächen des dänischen Programms werden bewertet und mit anderen nationalen Programmen zum Grundwasser-Monitoring verglichen. Die diskutierten Themen umfassen: Strategische Überlegungen für die Gestaltung von Monitoring, die Verbindung zwischen Forschung und Monitoring sowie die Übernahme von Anpassungsstrategien zum Klimawandel.

مراقبة المياه الجوفية في الدنمارك-الخواص ,الافاق,والمقارنة مع الدول ألأخرى

الملخص

اكثر من % 99 من الماء المستخدم في الدنمارك مصدره المياه الجوفية. منذ العام 1988 تم وضع برنامج وطني متكامل لمراقبة المياه الجوفية يعتمد على 74 بئر استخراجي و 6 مناطق تجمع مائي زراعية يحتوي على اكثر من 1500 عينة فحص من اعماق مختلفة لغرض الفحص السنوي لنوعية المياه في هذه المناطق.بالأضافة الى ذلك فانه يتم تحليل 10000 عينة من ابار اعتراضية كل 3-5 سنوات. يتم تحليل هذه المياه لمعرفة مكوناتها من العناصر الأثرية اللاعضوية, الملوثات العضوية الدقيقة والمضادات الحشرية وموادها الأيضية والشي المميز هنا هو وجود معطيات 20 سنة عن الملوثات غير العضوية . النموذج الرياضي المستخدم للمياه الجوفية سيساهم في تطوير المراقبة التقليدية المتبعة حاليا" لأجل تحسين الفهم الجيولوجي الاساسي والكمي لهذه المياه, كذلك سوف يدعم مفهوم العلاقة بين المياه الجوفية والمياه السطحية. البرنامج يعدَل بأستمرار لأضافة معلومات جديدة تأتي من برامج بحوث مختلفة وكذلك لأجل الأيفاء بالقرارات الخاصة بالمياه التي تتخذ حاليا"في الادارة الاوربية للانظمة المائية خصوصا" ما يتعلق بالتركيز على الثوابت الكمية وعلى علاقة المياه الجوفية بالسطحية. ان نقاط قوة وضعف البرنامج الدنماركي قد درست وتم مقارنتها مع برامج وطنية اخرى في المنطقة. المواضيع التي نوقشت في هذا البحث تتضمن : المعطيات الاستراتيجية لتصميم المراقبة, العلاقة بين البحوث والمراقبة, وكيفية تبني الاستجابة للتغيير المناخي

Grondwater monitoring in Denemarken: Kenmerken, perspectieven en vergelijking met andere landen

Samenvatting

In Denemarken is meer dan 99% van het waterverbruik gebaseerd op grondwater en hebben we sinds 1988 een gedegen nationaal monitorings programma gebaseerd op 74 grondwater monitorings gebieden en 6 land monitorings stroomgebieden met tezamen 1500 filters in verschillende dieptes voor regelmatige bemonstering, meestal 1 keer per jaar. Daarbuiten analyseren waterschappen grondwater monsters van boringen elke 3 tot 5 jaar. Er wordt geanalyseerd voor zowel primaire stoffen, anorganische spoorstoffen, zware metalen, organische micro verontreinigingen als voor bestrijdingsmiddelen en hun afbreekproducten, en er zijn tijdsreeksen bekend van niet minder dan 20 jaar voor anorganische verontreinigingen. Grondwater modellering ondersteunt de monitoring omdat de conceptuele inzichten van de geologi verbeterd worden, en tegelijkertijd worden zowel beoordelingen van de kwantitatieve status als van de interactie tussen grondwater en oppervlaktewater mogelijk gemaakt. Het grondwater monitorings programma wordt de hele tijd aangepast aan nieuwe kennis en administratieve eisen, recentelijk de europese Kaderrichtlijn Water, vooral met betrekking tot de toenemende focus op kwantitatieve aspekten alsmede de interactie tussen grondwater en oppervlaktewater. Het deense programma wordt vergeleken met andere nationale grondwatermonitorings programma’s en sterkten en zwakheden worden besproken, hieronder strategische overwegingen met betrekking tot het ontwerpen van monitoring, de koppeling tussen onderzoek en monitoring alsmede aanpassing aan de gevolgen van klimaat veranderingen.

Grundvattenövervakning i Danmark - karaktäristik, perspektiv och jämförelse med andra länder

Sammenfattning

Mer än 99% av vattnet som används i Danmark utgörs av grundvatten. Sedan 1988 har Danmark haft ett omfattande nationellt övervakningsprogram för grundvatten, baserat på 74 avrinningsområden och 6 mindre lantbruksområden med mer än 1500 filter i olika djup för att erhålla regelbundna, oftast årliga, vattenkvalitets prov. Utöver detta analyseras 10000 vattenprov från utvinningsbrunnar vart tredje till femte år. Vattnet analyseras för huvudkomponenter, oorganiska spårämnen, organiska mikro föroreningar samt pesticider och dess metaboliter. Det innefattar också en unik 20årig tidsserie med data för oorganiska föroreningar. Grundvattenmodellering understöttar traditionell monitering, dels i förbättringen av den konceptuella geologiska förståelsen, dels i bedömningen av grundvattnets kvantitativa status samt interaktionen mellan grundvatten och ytvatten. Programmet har löpande blivit anpassat att inkludera ny kunskap från forsknings program och tillgodose nya handlingsplaner, för närvarande, EUs ramdirektiv för vatten, och särskilt med hänsyn till den ökade fokus på kvantitativa aspekter och på interaktion mellan grundvatten och ytvatten. Styrkor och svagheter i det Danska programmet har undersökts och jämförs med andra nationella övervakningsprogram för grundvatten. Ämnen som diskuterats här omfattar: strategiska övervägelser med hänsyn till övervakningsdesign, länken mellan forskning och övervakning samt ivärksättande av justeringar på grund av klimat förändringar.

Notes

Acknowledgements

The Danish regional authorities (the counties up to 2006) have collected programme data and reported these as well as regional results annually in the programme period. The efforts during recent years of our colleagues P. Nyegaard, C. L. Larsen, W. Brüsch, P. Rasmussen and A. L. Højberg to the annual national reporting of the Danish Groundwater Monitoring Programme are very much acknowledged. Further, L. T. Sørensen and B. Hansen are acknowledged for their contribution in the latest annual report. Finally, the invaluable contributions from our colleagues K. G. Villholth and J. C. Refsgaard, in terms of giving support for structure, content and language in this report, are highly appreciated.

References

  1. Abbott MB, Bathurst JC, Cunge JA, O’Connel PE, Rasmussen J (1986) An introduction to the European hydrological system—systeme hydrologique europeen, ‘SHE’, 1: history and philosophy of a physical-based, distributed modeling system. J Hydrol 87:45–59CrossRefGoogle Scholar
  2. Andersen LJ (1987) Grundvandsmoniteringsnet af 1. orden i Danmark [Groundwater monitoring network of first order in Denmark]. ATV-committee on groundwater contamination. Vingstedcentret, Denmark, 5–6 October 1987Google Scholar
  3. Broers HP (2002) Strategies for regional groundwater quality monitoring. Nederlands Geographical Studies, NGS 306. PhD Thesis, University of Utrecht, The NetherlandsGoogle Scholar
  4. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in groundwater quality. J Hydrol 296:192–220CrossRefGoogle Scholar
  5. Brüsch W, Stockmarr J, Kelstrup N, von Platen-Hallermund F, Rosenberg P (2004) Pesticid forurenet vand i små vandforsyningsanlæg [Pesticide polluted water in minor water supplies]. Geological Survey of Denmark and Greenland. GEUS report no. 9/2004. GEUS, Copenhagen. http://www.geus.dk/program-areas/water/denmark/rapporter/pesticid_sma_anlaeg_feb02-dk.htm. Cited 1 January 2008
  6. Busenberg E, Plummer LN (1992) Use of chloroflurocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace systems of central Oklahoma. Water Resour Res 28:2257–2283CrossRefGoogle Scholar
  7. Christensen S (1994) Hydrological model for the Tude Å catchment. Nord Hydrol 25:145–166Google Scholar
  8. Czakó T (1994) Groundwater monitoring network in Denmark: example of results in the Nyborg area. Hydrol Sci J 39(1):1–17CrossRefGoogle Scholar
  9. Danish EPA (Environmental Protection Agency) (1987) Analyseprogram for det statslige grundvandsovervågningsnet-organiske mikroforureninger [Analysis programme for the national groundwater monitoring network-organic micro-pollutants]. Work report 1987/14, Danish EPA, CopenhagenGoogle Scholar
  10. Danish EPA (Environmental Protection Agency) (1989) Vandmiljøplanens overvågnings program [Monitoring Programme of the Action Plan on the Aquatic Environment]. Environmental Project no. 115, Danish EPA, CopenhagenGoogle Scholar
  11. Danish Ministry of the Environment (1987) Handlingsplan mod forurening af det danske vandmiljø med næringssalte af 31. januar 1987. Bilagshefte til Beretning over Vandmiljøplanen afgivet af miljø- og planlægningsudvalget den 30. april 1987. [First Action plan for the Aquatic Environment, 31 January 1987] Folketinget 1986–1987, Paper no. 1100, Danish Ministry of the Environment, Copenhagen, pp 9–21Google Scholar
  12. Danmarks Miljøportal (2008) Data om miljøet i Danmark [Data on the environment in Denmark]. Danmarks Miljøportal, Copenhagen. http://www.miljoeportal.dk. Cited 1 January 2008
  13. de Caritat P, Kirkhusmo LA (1995) The Norwegian groundwater monitoring network (LGN): alkalinity trends in selected aquifers from southern Norway during 1980–1990. NGU Bull 427:79–82Google Scholar
  14. EC (1991) Council of European Communities. Directive 91/676/ECC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Brussels, Belgium, 12 December 1991Google Scholar
  15. EC (2000) European Commission, Directive 2000/60/EC of the European Parliament and of the Council of October 23 2000 establishing a framework for community action in the field of water policy. Off J Eur Comm L 327:1–72Google Scholar
  16. EC (2006) European Commission, Directive 2006/118/EC of the European Parliament and of the Council of December 12 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Comm L 372:19–31Google Scholar
  17. EC (2007) European Commission, common implementation strategy for the water framework directive, guidance document No. 15. Guidance on groundwater monitoring. http://circa.europa.eu/Public/irc/env/wfd/library?l = /framework_directive/guidance_documents&vm = detailed&sb = Title. Cited 1 January 2008
  18. Environment Agency (2006a) Underground, under threat: the state of groundwater in England and Wales. Environment Agency, Rotherham, UK. http://publications.environment-agency.gov.uk/pdf/GEHO0906BLDB-e-e.pdf?lang = _e. Cited 1 January 2008
  19. Environment Agency (2006b) Underground, under threat–groundwater protection, policy and practice, part 2: technical framework. Environment Agency, Rotherham, UK. http://publications.environment-agency.gov.uk/pdf/GEHO1006BLMT-e-e.pdf?lang = _e. Cited 1 January 2008
  20. ETCW/EEA (European Topic Centre on Water/European Environment Agency) (2002) Evaluation of NOVA 2003: the Danish aquatic environment monitoring and assessment programme. European Environment Agency, Copenhagen. http://www.dmu.dk/NR/rdonlyres/085E220D-16CF-4916-B738-D68C5F30DFA9/0/Evaluation_NOVA2003_Final_Report.pdf. Cited 1 January 2008
  21. Fraters B, Boumans LJM, van Leeuwen TC, Broers P (2003) Monitoring effectiveness of the EU nitrates directive action programmes: approach by The Netherlands. In: Fraters B, Kovar K, Willems WJ, Stockmarr J, Grant R (eds) (2005) Monitoring effectiveness of the EU Nitrates Directive Action Programmes. RIVM report 680100002/2005. Results of the international MonNO3 workshop in The Netherlands, 11–12 June 2003. http://www.rivm.nl/bibliotheek/rapporten/500003007.html. Cited 1 January 2008
  22. GEUS (2007) Grundvand. Status og udvikling 1989–2006 [Groundwater. Status and trends 1989–2006]. Copenhagen: Geological survey of Denmark and Greenland (in Danish with English abstract). Available as electronic data only. www.groundwater.dk. Cited 1 January 2008
  23. GEUS (2008) JUPITER: Danmarks Geologiske & Hydrologiske Database [JUPITER: the Danish database on geology and hydrology). http://www.geus.dk/jupiter/index-dk.htm. Cited 1 January 2008
  24. Gosk E, Levins I, Jørgensen LF (2006) Agricultural influence on groundwater in Latvia. GEUS report 2006/85. Geological Survey of Denmark and Greenland, Ministry of the Environment, CopenhagenGoogle Scholar
  25. Gosk E, Levins I, Jørgensen LF (2007) Shallow groundwater quality in Latvia and Denmark. GEUS Bull 13:65–68Google Scholar
  26. Grath J, Ward R, Scheidleder A (2008) Groundwater monitoring in the policy context. In: Quevauviller P (ed) Groundwater science and policy: an international overview. RSC, CambridgeGoogle Scholar
  27. He Q, Li C (2006) Groundwater monitoring in China. Lect Notes Comput Sci 3841:1136–1143CrossRefGoogle Scholar
  28. Henriksen HJ, Troldborg L, Nyegaard P, Sonnenborg TO, Refsgaard JC, Madsen B (2003) Methodology for construction, calibration and validation of a national hydrological model for Denmark. J Hydrol 280:52–71CrossRefGoogle Scholar
  29. Henriksen HJ, Troldborg L, Højberg AL, Refsgaard JC (2008) Assessment of exploitable groundwater resources of Denmark by use of ensemble resource indicators and a numerical groundwater–surface water model. J Hydrol 348(1–2):224–240CrossRefGoogle Scholar
  30. Hinsby K, Purtschert R, Edmunds WM (2008) Groundwater age and quality. In: Quevauviller P (ed) Groundwater science and policy: an international overview. RSC, CambridgeGoogle Scholar
  31. Højberg AL, Refsgaard JC, van Geer F, Jørgensen LF, Zsuffa I (2007) Use of models to support the monitoring requirements for the Water Framework Directive. Water Resour Manage 21(10):1649–1672CrossRefGoogle Scholar
  32. Jæger Ø, Frengstad B, Sørdal T (2007) Landsomfattende grunnvannsnett–årsrapport 2006 [The national groundwater net-annual report 2006]. NGU Rapport 2007.118. NGU, Trondheim, Norway. http://www.ngu.no/FileArchive/237/2007_018.pdf. Cited 1 January 2008
  33. Jousma G, Roelofsen FJ (2004) World-wide inventory on groundwater monitoring. International Resources Assessment Centre, Utrecht, The Netherlands. http://igrac.nitg.tno.nl/pics/monitoring_report.pdf. Cited 1 January 2008
  34. Kjær J, Olsen P, Henriksen T, Ullum M (2005) Leaching of metribuzin metabolites and associated contamination of a sandy Danish aquifer. Environ Sci Technol 39(21):8374–8381CrossRefGoogle Scholar
  35. Koreimann C, Grath J, Winkler G, Nagy W, Vogel WR (1996) Groundwater Monitoring in Europe. European Topic Centre on Inland Waters, European Environmental Agency. Copenhagen, Denmark. http://reports.eea.europa.eu/92-9167-032-4/en/TopicReportNo14-1996.pdf. Cited 1 January 2008
  36. Kristiansen H, Brüsch W, Gravesen P, Genders S (1990) Transport og omsætning af N og P i Rabis Bæk opland. NPo-forskning fra Miljøstyrelsen, nr. B5. Miljøministeriet [Transport and transformation of nitrogen and phosphorus in the Rabis Creek catchment area. The N, P and organic matter research program, The Environmental Agency, 1985–1990, No. B5] Ministry of the Environment, CopenhagenGoogle Scholar
  37. Lee JY, Yi MJ, Yoo YK, Ahn KH, Kim GB, Won JH (2007) A review of the National Groundwater Monitoring Network in Korea. Hydrol Process 21:907–919CrossRefGoogle Scholar
  38. LEGMA (2006) Valsts statistikais prskats “Nr.2-Ūdens” [State statistical survey “No. 2, Water”]. Latvian Environment, Geology and Meteorology Agency, Riga, LatviaGoogle Scholar
  39. Onorati G, Di Meo T, Bussettini M, Fabiani C, Farrace MG, Fava A, Ferronato A, Mion F, Marchetti G, Martinelli A, Mazzoni M (2006) Groundwater quality monitoring in Italy for the implementation of the EU water framework directive. Phys Chem Earth 31:1004–1014Google Scholar
  40. Quevauviller P (2005) Groundwater monitoring in the context of EU legislation: reality and integration needs. J Environ Monit 7:89–102CrossRefGoogle Scholar
  41. Quevauviller P (2008a) General introduction: the need to protect groundwater. In: Quevauviller P (ed) Groundwater science and policy: an international overview. RSC, CambridgeGoogle Scholar
  42. Quevauviller P (2008b) Science-policy integration for common approaches linked to groundwater management in Europe. In: Quevauviller P (ed) Groundwater science and policy: an international overview, RSC, CambridgeGoogle Scholar
  43. Rasmussen P (1996) Monitoring shallow ground water quality in agricultural watersheds in Denmark. Environ Geol 27/4:309–319Google Scholar
  44. Refsgaard JC, Hansen E (1982) A distributed groundwater/surface water model for the Suså Catchment, part 2: simulations of streamflow depletions due to groundwater abstraction. Nord Hydrol 13:311–322Google Scholar
  45. Scheidleder A, Grath J, Winkler G, Stärk U, Koreimann C, Gmeiner C, Nixon S, Casillas J, Gravesen P, Leonard J, Elvira M, Lack TJ (2000) Environmental assessment report no. 3: groundwater quality and quantity in Europe. Office for Official Publications of The European Communities, Brussels. http://reports.eea.europa.eu/groundwater07012000/en. Cited 1 January 2008
  46. Schwaiger K (2003) Monitoring effectiveness of the EU Nitrates Directive Action Programmes: approach by Austria. In: Fraters B, Kovar K, Willems WJ, Stockmarr J, Grant R (eds) (2005) Monitoring effectiveness of the EU Nitrates Directive Action Programmes. . RIVM report 680100002/2005. Results of the international MonNO3 workshop in the Netherlands, 11–12 June 2003. http://www.rivm.nl/bibliotheek/rapporten/500003007.html. Cited 1 January 2008
  47. Stockmarr J (2005) Groundwater quality monitoring in Denmark. GEUS Bull 7:33–36Google Scholar
  48. Svendsen LM, Norup B (eds) (2005) NOVANA. Nationwide Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Programme description, part 1. NERI Technical Report No. 532. National Environmental Research Institute, Aarhus, Denmark. http://www.dmu.dk/NR/rdonlyres/0DDB35D3-31DC-42F4-BA13-2956723158CA/0/FR532_www.pdf. Cited 1 January 2008
  49. Svendsen LM, van der Bijl L, Boutrup S, Norup B (eds) (2005) NOVANA. National Monitoring and Assessment Programme for the Aquatic and Terrestrial Environments. Programme Description, part 2. NERI Technical Report No. 537. National Environmental Research Institute, Aarhus, Denmark.http://www.dmu.dk/NR/rdonlyres/5EC5E735-724E-4769-A560-D53613C89536/0/FR537_www_S_H.pdf. Cited 1 January 2008
  50. UNECE (1998) The United Nation Economic Commission for Europe. Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters. Aarhus, Denmark. http://www.unece.org/env/pp/documents/cep43e.pdf. Cited 1 January 2008
  51. van Geer F (2005) Groundwater monitoring in The Netherlands. In: Kamphorst E, Jørgensen LF, van Griensven A, Vanrolleghem PP (eds) State of the art on existing monitoring programmes around Europe. Harmoni-CA WP2 & WP4. Workshop report, Joint use of monitoring and modelling, Ghent, Belgium. http://www.harmoni-ca.info/About_Harmoni-CA/Work_Packages/Work_Package_4/index.php. Cited 1 January 2008
  52. van Geer F, Marsman A, Janssen GMCM (2008) Quantifying the economic benefit of groundwater monitoring: a pilot study. In: Refsgaard JC, Kovar K, Nygaard E, Haarder E (eds) Proceedings from the Sixth International Conference on Calibration and Reliability in Groundwater Modelling, Copenhagen, 9–13 September 2007. IAHS Publication 320, IAHS, Wallingford, UKGoogle Scholar
  53. Ward RS, Streetly MJ, Singleton AJ, Sears R (2004) A framework for monitoring regional groundwater quality. Q J Eng Geol Hydrogeol 37:271–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Geological Survey of Denmark and GreenlandCopenhagen KDenmark

Personalised recommendations