Skip to main content
Log in

Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer, southern Spain

La température et la conductivité électrique de l’eau souterraine en tant qu’outils de caractérisation des types d’écoulement dans des aquifères carbonatés: L’aquifère karstique de la Sierra de la Nieves, du Sud de l’Espagne

Temperatura del agua subterránea y conductividad eléctrica como herramientas para caracterizar flujos de agua en acuíferos carbonatados: el acuífero kárstico de la Sierra de las Nieves, sur de España

用地下水温度和电导率描述碳酸盐岩含水层中的径流模式: 以西班牙南部Sierra de las Nieves岩溶含水层为例

Temperatura e condutividade eléctrica da água subterrânea como ferramentas para caracterizar o padrão de escoamento em aquíferos carbonatados: O caso do aquífero cársico de Sierra de las Nieves, sul de Espanha

Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In carbonate massifs, flow patterns are conditioned by karstification processes which develop a conduit network and preserve low permeability microfractured blocks. The Sierra de las Nieves karst massif (southern Spain) is subjected to a given climatic and geological context, and thus it is possible to analyse the spatial and temporal variability of the water temperature and electrical conductivity at its main karst outlets, which display different responses to rainfall episodes. In this experimental field area, conduit flow and diffuse flow drainage patterns have been distinguished by combining groundwater temperature and electrical conductivity data. Both parameters show large variations in water coming from conduit flow systems and low variations in water drained by springs draining diffuse flow systems. However, groundwater temperature displays the smallest variations, which seems to indicate that this parameter is less sensitive as regards characterising the degree of karstification, which is a key question in characterising the aquifer functioning.

Résumé

Dans les massifs carbonates, les écoulements sont conditionnés par les processus de karstification qui ont permis le développement de réseaux de conduits karstiques au sein de blocs micro fractures de faible perméabilité. Le massif karstique de la Sierra de las Nieves (Sud de l’Espagne) est soumis à un climat donné dans un contexte géologique déterminé ; il est ainsi possible d’analyser la variabilité spatiale et temporelle de la température de l’eau et de la conductivité électrique au niveau des principaux exutoires, donnant des réponses différentes aux épisodes pluvieux. Dans le cadre de ce site expérimental, des écoulements de type conduit et de type drainage diffuse ont été mise en évidence à partir d’une analyse combine de la température de l’eau et de la conductivité électrique. Les deux paramètres indiquent une grande variabilité dans les eaux provenant des systèmes de conduits et de faibles variations pour les eaux des sources drainant des systèmes de drainage diffus. Cependant, la température de l’eau souterraine montre de faibles variations, ce qui semble indiquer que ce paramètre est moins sensible à la caractérisation du degré de karstification, une question clef de la caractérisation du fonctionnement d’un aquifère.

Resumen

En macizos carbonatados, las condiciones de flujo están condicionadas por los procesos de karstificación, los cuales desarrollan una red de conductos kársticos y preservan bloques microfracturados de baja permeabilidad. El macizo kárstico de la Sierra de las Nieves (Sur de España) está sometido a unas condiciones climáticas y geológicas dadas, por lo que es posible analizar la variabilidad temporal de la temperatura y conductividad eléctrica del agua de sus principales manantiales kársticos, los cuales muestran diferentes respuestas a los episodios de lluvia. En esta área experimental se han distinguido condiciones de flujo difuso y de flujo por conductos combinando datos de temperatura y conductividad eléctrica del agua subterránea. Ambos parámetros muestran grandes variaciones en el agua de los sistemas de flujo por conductos y bajas variaciones en el agua de manantiales alimentados por sistemas de flujo difuso. Sin embargo, la temperatura del agua muestra las variaciones menores, lo cual parece indicar que este parámetro es menos sensible para caracterizar el grado de karstificación, una cuestión clave para caracterizar el funcionamiento de los acuíferos.

摘要

在碳酸盐岩地块中, 岩溶管道网络和低渗透率微裂隙岩体共存。径流模式受到这种岩溶作用过程的制约。西班牙南部Sierra de las Nieves岩溶区具有已知的气候和地质环境, 因此可在主要的岩溶出水口分析能反映不同降水情景的水温和电导率的时空变化。在该试验场地区, 根据地下水温度和电导率数据识别出了管流和隙流的排泄方式。两种数据都表明, 来自管流系统的水量变化大, 而排泄隙流系统的泉的流量变化小。但地下水温度显示了最小的变化, 或表明该参数在刻画岩溶化程度时不够灵敏, 而岩溶化程度是描述含水层功能的关键问题。

Resumo

Em maciços carbonatados, os padrões de escoamento são condicionados por processos de carsificação que promovem o desenvolvimento de uma rede de condutas e preservam blocos microfracturados de baixa permeabilidade. O maciço cársico de Sierra de las Nieves (sul de Espanha) enquadra-se num contexto climático e geológico específico, sendo por isso possível analisar a variabilidade espacial e temporal da temperatura da água e da condutividade eléctrica nas suas descargas principais, que apresentam diferentes respostas para episódios chuvosos. Neste campo experimental, foram distinguidos padrões de drenagem de escoamento em condutas e de escoamento difuso, através da combinação de dados de temperatura e de condutividade eléctrica da água subterrânea. Ambos os parâmetros apresentam grandes variações na água proveniente do escoamento em condutas e reduzidas variações na água que é drenada pelas nascentes que provêm dos sistemas com escoamento difuso. Contudo, a temperatura da água subterrânea apresenta as menores variações, o que parece indicar que este parâmetro será menos sensível para a caracterização do grau de carsificação, que é a questão-chave para caracterizar o funcionamento do aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968

    Article  Google Scholar 

  • Andreo B, Liñán C, Carrasco F, Jiménez de Cisneros C, Caballero E, Mudry J (2004) Influence of rainfall quantity on the isotopic composition (18O and 2H) of water in mountainous areas: application for groundwater research in the Yunquera-Nieves karst aquifers (South Spain). Appl Geochem 19:561–574

    Article  Google Scholar 

  • Andrieux C (1978) The experiences form the temperature in the karst (in French). Colloque de Tarbes, Le karst: son originalité physique, son importance économique. Association des Géologues du SudOuest (AGSO), Orleans, France, pp 48–63

    Google Scholar 

  • Bakalowicz M (1977) Study of degree of underground flow organization in the carbonate aquifers by a new hydrochemical method (in French). CR Acad Sci Paris 284(D):2463–2466

    Google Scholar 

  • Benderitter YB, Roy B, Tabbagh A (1993) Flow characterization through heat transfer evidence in a carbonate fractured medium: first approach. Water Resour Res 29(11):3741–3747

    Article  Google Scholar 

  • Birk S, Liedl R, Sauter M (2004) Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico–chemical spring responses (Urenbrunnen, SW-Germany). J Hydrol 286:179–193

    Article  Google Scholar 

  • Bundschuh J (1993) Modelling annual variations of spring and groundwater temperatures associated with shallow aquifer systems. J Hydrol 142:427–444

    Article  Google Scholar 

  • Crowther J, Pitty AF (1982) Water temperature variability as an indicator of shallow-depth groundwater behaviour in limestone areas in west Malaysia. J Hydrol 57:137–146

    Article  Google Scholar 

  • Cruz Sanjulián J, García-Rossell L (1975) Thermal water in Southern Spain (in Spanish). Bol Geol Miner 86(2):179–186

    Google Scholar 

  • Ferguson G (2007) Heterogeneity and thermal modelling of ground water. Ground Water 45(4):485–490

    Article  Google Scholar 

  • Genthon P, Bataille A, Fromant A, D’Hulst D, Bourges F (2005) Temperature as a marker for karstic waters hydrodynamics. inferences from 1 year recording at La Peyrére cave (Ariège, France). J Hydrol 311:157–171

    Article  Google Scholar 

  • James ER, Manga M, Rose TP Hudson GB (2000) The use of temperature and the isotopes of OHC and noble gases to determine the pattern and spatial extent of groundwater flow. J Hydrol 237:100–112

    Article  Google Scholar 

  • Lastennet R (1994) Role of unsaturated zone in the functioning of karst aquifers: approach for the physico–chemical and isotopic study of input and output (springs) of Ventoux massif (Vaucluse) (in French). PhD Thesis, Univ. Avignon and Pays de Vaucluse, France, 239 pp

  • Liedl R, Sauter M (1998) Modelling of aquifer genesis and heat transport in Karst systems. Bull Hydrogeol 16:185–200

    Google Scholar 

  • Liñán C (2005) Hydrogeology of carbonate aquifers in the Yunquera-Nieves Unit (Malaga) (in Spanish). Serie Hidrogeología y Aguas subterráneas 16, Publicaciones del Instituto Geológico y Minero de España, Madrid, 322 pp

  • Liñán C, Andreo B, Carrasco F (1999) Hydrogeological research on carbonate aquifers of a UNESCO Biosphere Reserve (Sierra de las Nieves, Málaga, S Spain). XXIX Congress of International Association of Hydrogeologists. Bratislava, Slovak Republic, 1999, pp 203–208

  • López Chicano M, Cerón JC, Vallejos A, Pulido Bosch A (2001) Geochemistry of thermal springs, Alhama de Granada (southern Spain). Appl Geochem 16:1153–1163

    Article  Google Scholar 

  • Malard F, Chapuis R (1995) Temperature logging to describe the movement of sewage-polluted surface water infiltrating into a fractured rock aquifer. J Hydrol 173:191–217

    Article  Google Scholar 

  • Martin JB, Dean RW (1999) Temperature as a natural tracer of short residence times for groundwater in karst aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst Modeling. Spec. Publ. 5, Karst Waters Institute, Leesburg, VA, pp 236–242

  • Mudry J (1987) Information from the natural physico–chemical tracers to the hydrokinematic knowledge of carbonate aquifers (in French). PhD Thesis, Univ. Besançon, France

  • Roy B, Benderitter Y (1986) Natural thermal transfer in a superficial fissured carbonate system (in French). Bull Soc Géol France 2(4):661–666

    Google Scholar 

  • Screaton E, Martin JB, Ginn B, Smith L (2004) Conduit properties and karstification in the unconfined Floridan aquifer. Ground Water 42(3):338–346

    Article  Google Scholar 

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Smith L, Chapman DS (1983) On the thermal effects of groundwater flow, 1: regional scale systems. J Geophys Res 88(B1):593–608

    Article  Google Scholar 

  • Tulipano L, Fidelibus MD (1995) Karst groundwater protection, National Report for Italy. In: Final Report COST Action 65, COST, Brussels, pp 171–201

  • Woodbury AD, Smith JL (1985) On the thermal effects of three dimensional groundwater flow. J Geophys Res 90(B1):759–767

    Article  Google Scholar 

Download references

Acknowledgements

This work is a contribution to projects CGL 2005-05427 and CGL2008-6158 BTE of DGICYT and IGCP-513 of UNESCO, and to project P06-RNM-02161 and Group RNM 308 of Junta de Andalucía. We are grateful to Dr. Michel Bakalowicz and two anonymous reviewers, whose comments have enabled us to improve the original version of this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Liñán Baena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liñán Baena, C., Andreo, B., Mudry, J. et al. Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: The Sierra de las Nieves karst aquifer, southern Spain. Hydrogeol J 17, 843–853 (2009). https://doi.org/10.1007/s10040-008-0395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0395-x

Keywords

Navigation