Skip to main content

Advertisement

Log in

Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river–groundwater exchange zones in a subtropical stream

Combinaison de la conductivité hydraulique avec les gradients biogéochimiques et l’activité microbienne le long d’une zone d’échange eau de surface–eau souterraine sur une rivière subtropicale

Integración de la conductividad hidráulica con gradientes biogeoquímicos y actividad microbiana a través de las zonas de intercambio río–aguas subterráneas en una corriente fluvial subtropical

亚热带河流-地下水交换带上的渗透系数与生物地球化学梯度及微生物活度的整合研究

Integração da condutividade hidráulica com gradientes biogeoquímicos e a actividade microbiológica ao longo de zonas de interacção rio–água subterrânea numa linha de água subtropical

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The pervious lateral bars (parafluvial zone) and beds (hyporheic zone), where stream water and groundwater exchange, are dynamic sites of hydrological and biological retention. The significance of these biogeochemical ‘hotspots’ to stream and groundwater metabolism is largely controlled by filtration capacity, defined as the extent to which subsurface flowpaths and matrix hydraulic conductivity modify water characteristics. Where hydraulic conductivity is high, gradients in biogeochemistry and microbial activity along subsurface flowpaths were hypothesized to be less marked than where hydraulic conductivity is low. This hypothesis was tested in two riffles and gravel bars in an Australian subtropical stream. At one site, gradients in chemical and microbial variables along flowpaths were associated with reduced hydraulic conductivity, longer water residence time and reduced filtration capacity compared with the second site where filtration capacity was greater and longitudinal biogeochemical trends were dampened. These results imply that factors affecting the sediment matrix in this subtropical stream can alter filtration capacity, interstitial microbial activity and biogeochemical gradients along subsurface flowpaths. This hydroecological approach also indicates potential for a simple field technique to estimate filtration capacity and predict the prevailing hyporheic gradients in microbial activity and biogeochemical processing efficiency, with significant implications for stream ecosystem function.

Résumé

Les bancs de graviers perméables latérales (zone parafluviale) et du fond des cours d’eau (zone hyporhéique) où il y a échange entre eau de surface et eau souterraine sont des sites actifs de rétention hydrologique et biologique. L’importance de ces zones spécifiques pour le métabolisme des cours d’eau et des eaux souterraines est largement contrôlée par la capacité de filtration définie comme l’étendue pour laquelle les flux de subsurface et les conductivités hydrauliques modifient les caractéristiques de l’eau. Lorsque la conductivité hydraulique est élevée, les gradients biogéochimiques et d’activité microbienne le long des flux de subsurface sont supposés être moins marqués que pour des conductivités hydrauliques faibles. Cette hypothèse a été testée sur deux radiers et bancs de galets d’une rivière subtropicale d’Australie. Sur un des sites les gradients des variables chimiques et microbiennes le long du flux sont associés une conductivité hydraulique réduite, une augmentation des temps de résidence et une diminution de la capacité de filtration alors que sur le second site la capacité de filtration est plus importante et les tendances biogéochimiques sont plus amorties. Ces résultats impliquent que la matrice sédimentaire de cette rivière subtropicale peut altérer la capacité de filtration, l’activité microbienne interstitielle et les gradients biogéochimiques le long des circulations de subsurface de subsurface. Cette approche hydro-écologique indique également qu’une technique de terrain simple peut permettre l’estimation de la capacité de filtration et des gradients hyporhéiques d’activité microbienne et l’efficacité des processus biogéochimiques avec une implication forte pour le fonctionnement des écosystèmes fluviaux.

Resumen

Los bancos laterales permeables (zona parafluvial) y los lechos (zona hiporreica), donde se intercambian el agua fluvial y el agua subterránea, son sitios dinámicos de retención hidrológica y biológica. La importancia de estos puntos biogeoquímicos claves respecto al metabolismo en la corriente y en las aguas subterráneas está fundamentalmente controlada por la capacidad de filtración, definida como el grado en que el flujo subsuperficial y la matriz de conductividad hidráulica modifican las características del agua. Se planteó la hipótesis que en los sitios en que la conductividad hidráulica es alta, los gradientes en la actividad biogeoquímica y microbiana a través de los flujos subsuperficiales eran menos marcados que donde conductividad hidráulica era baja. Esta hipótesis fue probada en dos rápidos y barras de gravas en una corriente fluvial subtropical de Australia. En un sitio, los gradientes de las variables químicas y microbianas a través del flujo estuvieron asociadas con una conductividad hidráulica reducida, un tiempo de residencia del agua más prolongado y una reducida capacidad de filtración comparada con el segundo sitio, donde la capacidad de filtración era mayor y la tendencias biogeoquímicas longitudinales fueron amortiguadas. Estos resultados implican que los factores que afectan a la matriz de sedimentos en esta corriente subtpropical pueden alterar la capacidad de filtración, la actividad microbiana intersticial y los gradientes biogeoquímicos a través del flujo subsuperficial. Este enfoque hidroecológico también indica las posibilidades de una técnica simple de campo para estimar la capacidad de filtración y predecir los gradientes hiporreicos predominantes en la actividad microbiana y la eficiencia de los procesos biogeoquímicos, con importantes consecuencias para el funcionamiento del ecosistema de la corriente fluvial.

摘要

可透水的河岸沙坝 (河岸带) 和河床 (交错带) 是地下水和地表水发生交换的主要区域, 同时也是易发生水流和生物阻滞的场所。渗透能力, 即地下径流方向和相应的含水层骨架的渗透系数对水中各项特征的影响程度, 很大程度上决定着这些生物地球化学“热点”在地下水与地表水的交替中所起的作用。有假说认为, 在地下水径流方向上, 水力传导率越大, 生物地球化学和微生物活度的变化梯度值越低。在澳洲的亚热带地区的两个河流及其两侧砾石坝中对这个假设进行了检验。在沿径流方向渗透系数降低、水滞留时间加长、渗透能力降低的一处试验点, 化学和微生物变量的梯度变化较大。另一渗透能力较大而沿流向生物地球化学趋势减缓。结果显示 : 在亚热带地区的河流中, 影响含水层骨架的因素将同样改变渗透能力、裂隙中微生物活度和地下水径流方向上生物地球化学梯度。这个水文生态方法在河流生态系统功能上具有重要的指示作用, 在评估渗透能力和预测主要交错带上微生物活度和生物地球化学梯度, 有可能成为一个简单的野外技术方法。

Resumo

As barras laterais anteriores (zona parafluvial) e as camadas (zona hiporreica), onde a água do rio e a água subterrânea interagem, são locais dinâmicos de retenção hidrológica e biológica. A influência destes pontos quentes (hotspots) biogeoquímicos no metabolismo das linhas de água e da água subterrânea é fortemente controlada pela capacidade de filtração, definida como a intensidade da alteração das características da água devido aos fluxos subsuperficiais e à condutividade hidráulica da matriz. Nos locais onde a condutividade hidráulica é elevada, supôs-se que os gradientes biogeoquímicos e de actividade microbiológica ao longo das linhas de fluxo subsuperficial eram menos marcados do que nos locais onde a condutividade hidráulica é baixa. Esta suposição foi testada em dois pontos com sedimentos que provocam a formação de rápidos no leito do rio e que constituem barras de cascalho numa linha de água subtropical australiana. Num dos locais, os gradientes das variáveis químicas e microbiológicas estavam associados a uma condutividade hidráulica baixa, tempo de residência de água mais elevado e capacidade de filtração reduzida, comparativamente ao segundo local, onde a capacidade de filtração era mais elevada e as tendências biogeoquímicas longitudinais eram ténues. Estes resultados revelam que os factores que afectam a matriz do sedimento desta linha de água subtropical podem modificar a capacidade de filtração, a actividade microbiológica intersticial e os gradientes biogeoquímicos ao longo de linhas de fluxo subsuperficiais. Esta metodologia hidroecológica revela também potencial como técnica de campo simples para estimar a capacidade de filtração e prever os gradientes hiporreicos dominantes da actividade microbiológica e a eficiência dos processos biogeoquímicos, os quais têm implicações significativas no funcionamento do ecossistema dos rios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker MA, Dahm CN, Valett HM (1999) Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol Oceanogr 44:1530–1539

    Google Scholar 

  • Battin TJ, Kaplan LA, Newbold D, Hendricks SP (2003) A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshw Biol 48:995–1014

    Article  Google Scholar 

  • Blenkinsopp SA, Lock MA (1990) The measurement of electron transport activity in river biofilms. Water Res 24:441–445

    Article  Google Scholar 

  • Boulton AJ (2007) Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshw Biol 52:632–650

    Article  Google Scholar 

  • Boulton AJ, Foster JG (1998) Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia. Freshw Biol 40:229–243

    Article  Google Scholar 

  • Boulton AJ, Valett HM, Fisher SG (1992) Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch Hydrobiol 125:37–61

    Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Sys 29:59–81

    Article  Google Scholar 

  • Boulton AJ, Fenwick G, Hancock PJ, Harvey MS (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invert Sys 22:103–116

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Burns DA (1998) Retention of NO3 in an upland stream environment: a mass balance approach. Biogeochemistry 40:73–96

    Article  Google Scholar 

  • Carlyle GC, Hill AR (2001) Groundwater phosphate dynamics in a river riparian zone: effects of hydrologic flowpaths, lithology and redox chemistry. J Hydrol 247:151–168

    Article  Google Scholar 

  • Chestnut TJ, McDowell WH (2000) C and N dynamics in the riparian and hyporheic zones of a tropical stream, Luquillo Mountains, Puerto Rico. J N Am Benthol Soc 19:199–214

    Article  Google Scholar 

  • Claret C, Marmonier P, Boissier JM, Fontvieille D, Blanc P (1997) Nutrient inputs from parafluvial interstitial water to the river: importance of gravel bar heterogeneity. Freshw Biol 37:656–670

    Article  Google Scholar 

  • Claret C, Boulton AJ, Dole-Olivier MJ, Marmonier P (2001) Functional processes versus state variables: interstitial organic matter pathways in floodplain habitats. Can J Fish Aquat Sci 58:1594–1602

    Article  Google Scholar 

  • Duff JH, Triska FJ (2000) Nitrogen biogeochemistry and surface-subsurface exchange in streams. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic, San Diego, pp 197–220

    Chapter  Google Scholar 

  • Findlay S (1995) Importance of surface-subsurface exchanges in stream ecosystems: the hyporheic zone. Limnol Oceanogr 40:159–164

    Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  Google Scholar 

  • Fisher SG, Welter JR (2005) Flowpaths as integrators of heterogeneity in streams and landscapes. In: Lovett GM, Jones CG, Turner MG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 311–328

    Chapter  Google Scholar 

  • Fisher SG, Grimm NB, Marti E, Gomez R (1998) Hierarchy, spatial configuration, and nutrient cycling in a desert stream. Austral J Ecol 23:41–52

    Article  Google Scholar 

  • Fisher SG, Welter J, Schade J, Henry J (2001) Landscape challenges to ecosystem thinking: creative flood and drought in the American Southwest. Sci Mar 65:181–192

    Article  Google Scholar 

  • Fisher SG, Sponseller RA, Heffernan JB (2004) Horizons in stream biogeochemistry: flowpaths to progress. Ecology 85:2369–2379

    Article  Google Scholar 

  • Fontvieille D, Outaguerouine A, Thevenot DR (1992) Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: application to activated sludges. Environ Technol 13:531–540

    Article  Google Scholar 

  • Gibert J, Dole-Olivier MJ, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Décamps H (eds) Ecology and management of aquatic-terrestrial ecotones, man and the biosphere series. UNESCO, Paris, pp 199–225

    Google Scholar 

  • Grimm NB, Fisher SG (1984) Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 11:219–228

    Article  Google Scholar 

  • Hendricks SP (1993) Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J N Am Benthol Soc 12:70–78

    Article  Google Scholar 

  • Hendricks SP (1996) Bacterial biomass, activity, and production within the hyporheic zone of a north-temperate stream. Arch Hydrobiol 13:467–487

    Google Scholar 

  • Hendricks SP, White DS (2000) Stream and groundwater influences on phosphorus biogeochemistry. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic, San Diego, CA, pp 221–235

    Chapter  Google Scholar 

  • Hill AR, Labadia CF, Sanmugada K (1998) Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry 42:285–310

    Article  Google Scholar 

  • Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J N Am Benthol Soc 13:468–478

    Article  Google Scholar 

  • Jones JB Jr, Holmes RM (1996) Surface-subsurface interactions in stream ecosystems. Trends Ecol Evol 11:239–242

    Article  Google Scholar 

  • Jones JB Jr, Holmes RM (2000) Streams and ground waters. Academic, San Diego, CA

    Google Scholar 

  • Jones JB Jr, Fisher SG, Grimm NB (1995) Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76:942–952

    Article  Google Scholar 

  • Lewis DB, Grimm NB, Harms TK, Schade JD (2007) Subsystems, flowpaths, and the spatial variability of nitrogen in a fluvial ecosystem. Landscape Ecol 22:911–924

    Article  Google Scholar 

  • Malard F, Tockner K, Dole-Olivier MJ, Ward JV (2002) A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshw Biol 47:621–641

    Article  Google Scholar 

  • Mermillod-Blondin F, Creuzé des Châtelliers M, Marmonier P, Dole-Olivier MJ (2000) Distribution of solutes, microbes and invertebrates in river sediments along a riffle-pool-riffle sequence. Freshw Biol 44:255–269

    Article  Google Scholar 

  • Morrice JA, Valett HM, Dahm CN, Campana ME (1997) Alluvial characteristics, groundwater-surface water exchange and hydrologic retention in headwater streams. Hydrol Proc 11:253–267

    Article  Google Scholar 

  • Morrice JA, Dahm CN, Valett HM, Unnikrishna PV, Campana ME (2000) Terminal electron accepting processes in the alluvial sediments of a headwater stream. J N Am Benthol Soc 19:593–608

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Poole GC, Stanford JA, Running SW, Frissell CA (2006) Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. J N Am Benthol Soc 25:288–303

    Article  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microb 43:1256–1261

    Google Scholar 

  • Stanley EH, Boulton AJ (1995) Hyporheic processes during flooding and drying in a Sonoran Desert stream: hydrologic and chemical dynamics. Arch Hydrobiol 134:1–26

    Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (1990) Influence of exchange flow between the channel and hyporheic on nitrate production in a small mountain stream. Can J Fish Aquat Sci 47:2099–2111

    Article  Google Scholar 

  • Vervier P, Gibert J, Marmonier P, Dole-Olivier MJ (1992) A perspective on the permeability of the surface freshwater-groundwater ecotone. J N Am Benthol Soc 11:93–102

    Article  Google Scholar 

  • Wood ED, Armstrong FAJ, Richards FA (1967) Determination of nitrate in seawater by cadmium-copper reduction to nitrite. J Mar Biol Assoc UK 47:23–31

    Google Scholar 

  • Zimmermann R, Iturriaga R, Becker-Birck J (1978) Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl Environ Microbiol 36:926–935

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Australian Research Council. The authors warmly thank Marion Costigan and Paul Lisle (University of New England) for their help in the laboratory and the Guest Editor and three anonymous reviewers for comments on early drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Claret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claret, C., Boulton, A.J. Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river–groundwater exchange zones in a subtropical stream. Hydrogeol J 17, 151–160 (2009). https://doi.org/10.1007/s10040-008-0373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0373-3

Keywords

Navigation