Skip to main content
Log in

Hydrogeology and groundwater ecology: Does each inform the other?

Hydrogéologie et écologie des eaux souterraines: quelles informations réciproques?

Hidrogeología y ecología de aguas subterráneas: ¿Cada parte informa a la otra?

水文地质与地下水生态 : 相互关联吗 ?

Hidrogeologia e ecologia das águas subterrâneas: cada conceito informa sobre o outro?

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The known, perceived and potential relationships between hydrogeology and groundwater ecology are explored, along with the spatial and temporal scale of these relations, the limit of knowledge and areas in need of research. Issues concerned with the subterranean part of the water cycle are considered from the perspective of the biology of those invertebrate animals that live, of necessity, in groundwater and the microbiological milieu essential for their survival. Groundwater ecosystems are placed in a hydrogeological context including the groundwater evolution along a flowpath, the significance of the biodiversity and of the ecosystem services potentially provided. This is considered against a background of three major components essential to the functioning of groundwater ecosystems, each of which can be affected by activities over which hydrogeologists often have control, and each, in turn, may have implications for groundwater management; these are, a place to live, oxygen and food (energy). New techniques and increasing awareness amongst hydrogeologists of the diversity and broad distribution of groundwater ecosystems offer new opportunities to develop cross disciplinary work between hydrogeologists and groundwater ecologists, already demonstrated to be a field for collaboration with broad benefits.

Résumé

Les relations reconnues, perçues et potentielles entre l’hydrogéologie et l’écologie des eaux souterraines sont discutées, plus particulièrement en considérant les échelles spatiales et temporelles, la limite des connaissances ainsi que les besoins en recherche. Les questions concernant la portion souterraine du cycle de l’eau sont abordées du point de vue de la biologie des invertébrés qui vivent par nécessité dans les eaux souterraines et du milieu microbiologique essentiel à leur survie. Les écosystèmes des eaux souterraines sont replacés dans leur contexte hydrogéologique prenant en considération la notion des écoulements souterrains, l’importance de la biodiversité et des apports potentiellement fournis par ceux-ci. Trois composants essentiels au fonctionnement des écosystèmes des eaux souterraines sont considérés. Ces derniers peuvent être perturbés par les activités anthropiques sur lesquelles les hydrogéologues peuvent souvent contrôler, et par la même intervenir dans la gestion des eaux souterraines; ce sont l’habitat, l’oxygène et les éléments nutritifs (énergie). De nouvelles techniques ainsi qu’une prise de conscience en croissance au sein de la communauté des hydrogéologues sont favorables au développement d’actions de recherche pluridisciplinaire entre les hydrogéologues et les écologues des eaux souterraines. Ces actions s’inscrivent dans un champ de collaboration qui a déjà fourni des résultats importants.

Resumen

Se exploran las relaciones conocidas, percibidas y potenciales entre la hidrogeología y la ecología de aguas subterráneas, junto con las escalas espacial y temporal de dichas relaciones, los límites del conocimiento y las áreas que requieren de investigación. Se consideran los temas relacionados con la parte subterránea del ciclo del agua desde la perspectiva de la biología de los animales invertebrados -que viven por necesidad en el agua subterránea- y los medios microbiológicos esenciales para su supervivencia. Los ecosistemas de aguas subterráneas se sitúan en un contexto hidrogeológico que incluye la evolución del agua subterránea a lo largo de los caminos del flujo, el significado de la biodiversidad y los servicios ecosistémicos que potencialmente proveen. Las consideraciones toman en cuenta un fondo de tres componentes mayores que son esenciales para el funcionamiento de los ecosistemas de aguas subterráneas, cada uno de los cuales puede ser afectado por actividades que los hidrogeólogos controlan, y que, a su vez, pueden tener consecuencias en la gestión de las aguas subterráneas. Los componentes son: un sitio para vivir, oxígeno y alimento (energía). Las nuevas técnicas y la creciente conciencia entre los hidrogeólogos de la diversidad y la amplia distribución de los ecosistemas de aguas subterráneas ofrecen nuevas oportunidades para desarrollar un trabajo disciplinario transversal entre hidrogeólogos y ecólogos de aguas subterráneas, que ya ha demostrado ser un campo de cooperación con amplios beneficios.

摘要

本文探究了水文地质与地下水生态那种已知的、能预测的和潜在的关系, 连同这种关系的时空尺度和需要研究的问题和知识的局限性。从必须生存在地下水和微生物环境中的无脊椎动物的生物学角度考虑了与水循环地下部分相关的问题。将地下水生态系统置于水文地质的关系中, 包括地下水沿着水流路径的演化, 生物多样性和可能提供的生态系统支撑条件的重要性。这种考虑基于三个决定地下水生态系统功能的本质组分, 其中每一个组分都受水文地质学家能够控制的活动影响, 每一个组分可能隐含对地下水管理有用的信息。这三个组分即有地方居住, 有氧气, 有食物 (能源) 。随着新技术的应用和水文地质学家对地下水生态系统的差异性及分布的广度理解的加深, 将为发展水文地质学家和地下水生态学家跨学科的合作提供新的机遇, 这已经在一些广泛受益、合作的领域的中有所表现。

Resumo

As relações conhecidas, entendidas e potenciais, entre a hidrogeologia e a ecologia das águas subterrâneas são exploradas, conjuntamente com a escala espacial e temporal destas relações, o limite dos conhecimentos e áreas que necessitam de investigação. Questões relacionadas com a parte subterrânea do ciclo da água são consideradas do ponto de vista da biologia dos animais invertebrados que vivem, por necessidade, nas águas subterrâneas e do meio microbiológico essencial para a sua sobrevivência. Os ecossistemas das águas subterrâneas são colocados num contexto hidrogeológico, incluindo a evolução das águas subterrâneas ao longo de uma linha de fluxo, a importância da biodiversidade e dos serviços ecossistémicos potencialmente prestados. Isto é considerado num contexto de três grandes componentes essenciais ao funcionamento dos ecossistemas de águas subterrâneas, cada um dos quais pode ser afectado por actividades sobre as quais, muitas vezes, os hidrogeólogos têm controle, e, por seu turno, podem ter implicações para a gestão das águas subterrâneas; estas componentes são: um local para viver, oxigénio e alimento (energia). Novas técnicas e o incremento da sensibilização entre os hidrogeólogos sobre a diversidade e a ampla distribuição dos ecossistemas de águas subterrâneas oferecem novas oportunidades para desenvolvimento transversal de trabalhos disciplinares entre hidrogeólogos e ecologistas de águas subterrâneas, já demonstrado ser um amplo campo de colaboração com grandes benefícios para todos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amend JP, Teske AA (2004) Expanding frontiers in deep subsurface microbiology. Paleogeogr Paleoclim Paleoecol 219:131–155

    Google Scholar 

  • Anderson RT, Lovley DR (1997) Ecology and Biogeochemistry of in situ groundwater bioremediation. Adv Microb Ecol 15:289–350

    Google Scholar 

  • Arakel AV (1986) Evolution of calcrete in palaeodrainages of the Lake Napperby area, Central Australia. Paleogeogr Paleoclim Paleoecol 54:283–303

    Google Scholar 

  • Arthington AH, King JM, O’Keefe JH et al (1992) Development of an holistic approach for assessing environmental flow requirements of riverine ecosystems. In: Pigram JJ, Hooper BP (eds) Proc Int Semin Workshop on water allocation for the environment. Centre for Water Policy Research, University of New England, Armidale, Australia, pp 69–76

    Google Scholar 

  • Ash C, Hanson B, Norman C (2002) Earth, air, fire, and water. Science 296:1055

    Google Scholar 

  • Baker MA, Valett HM, Dahm CN (2000) Organic carbon supply and metabolism in a shallow groundwater ecosystem. Ecology 81:3133–3148

    Google Scholar 

  • Bärlocher F, Murdoch LH (1989) Hyporheic biofilms: a potential food source for interstitial animals. Hydrobiologia 184:61–67

    Google Scholar 

  • Barnett JC, Commander DP (1985) Hydrogeology of the western Fortescue Valley, Pilbara Region, Western Australia. Geol Surv Rec 1986/8. West Aust Geol Surv, Perth, Australia

    Google Scholar 

  • Bjarni K, Kristjánsson BK, Svavarsson J (2007) Subglacial refugia in Iceland enabled groundwater amphipods to survive glaciations. Am Nat 170:292–296

    Google Scholar 

  • Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine [A new research field on subterranean aquatic fauna]. C R Sci Ser III Sci Vie Acad Sci Paris 265D:369–370

    Google Scholar 

  • Boulton AJ (2000a) River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosyst Health 6:108–118

    Google Scholar 

  • Boulton AJ (2000b) The subsurface macrofauna. In: Jones J, Mulholland P (eds) Streams and ground waters. Academic, New York, pp 337–361

    Google Scholar 

  • Boulton AJ (2001) ‘Twixt two worlds: taxonomic and function biodiversity at the surface water/groundwater interface. Rec West Aust Mus Supp 64:1–13

    Google Scholar 

  • Boulton AJ (2005) Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquat Conserv Mar Freshw Ecosys 15:319–323

    Google Scholar 

  • Boulton AJ, Hakenkamp C, Palmer M et al (2002) Freshwater meiofauna and surface water-sediment linkages: a conceptual framework for cross-system comparisons. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna biology and ecology. Backhuys, Leiden, The Netherlands, pp 241–259

    Google Scholar 

  • Boulton AJ, Fenwick GD, Hancock PJ et al (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebr Syst 22:103–116

    Google Scholar 

  • Bournaud M, Amoros C (1984) Des indicateurs biologiques aux descripteurs de fontionnement: quelques exemples dans un système fluvial [Biological indicators with a description of function: some examples in a river system]. Bull Soc Ecol 15:57–66

    Google Scholar 

  • Boutin C (1993) Biogéographie historique des crustacés isopodes Cirolanidae stygobies du groupe Typhocirolana dans le bassin méditerranéen. C R Sci Ser III Sci Vie Acad Sci Paris 316:1505–1510

    Google Scholar 

  • Boutin C, Coineau N, Messouli M (1997) Biodiversity and biogeography in subterranean aquatic crustacean Metacrangonyctidae (Amphipoda). Proc. 12 Int. Congr. Speleology, vol 3, August 1997, La Chaux-de-Fonds, Switzerland, 350 pp

  • Brad T (2007) Subsurface landfill leachate: home to complex and dynamic eukaryotic communities. PhD Thesis, Vrije Universiteit, Amsterdam

    Google Scholar 

  • Bradbury JH (2000) Western Australian stygobiont amphipods (Crustacea: Paramelitidae) from Mt Newman and Millstream regions. Rec West Aust Mus Suppl 60:1–102

    Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Google Scholar 

  • Buhay JE, Moni G, Mann N, Crandall KA (2006) Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Mol Phylogen Evol 42:435–448

    Google Scholar 

  • Bunn SE, Arthington AH (2004) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507

    Google Scholar 

  • Burnett WC, Aggarwal PK et al (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543

    Google Scholar 

  • Burns A, Walker KF (2000) Biofilms as food for decapods (Atyidae, Paleomonidae) in the River Murray, South Australia. Hydrobiologia 437:83–90

    Google Scholar 

  • Buttrick D (2005) Case study #15: hazard assessment on dolomite at Simunye, South Africa. In: Waltham T, Bell F, Culshaw MG (eds) Sinkholes and subsidence: karst and cavernous rocks in engineering and construction. Springer, Berlin, pp 341–346

    Google Scholar 

  • Caccone A, Milinkovitch MC, Sbordoni V et al (1994) Molecular biogeography: using the Corsica-Sardinia microplate disjunction to calibrate mitochondrial rDNA evolutionary rates in mountain newts (Euproctus). J Evol Biol 7:227–245

    Google Scholar 

  • Chapelle FH (2001) Ground-water microbiology and geochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Chappuis PA (1927) Die Tierwelt der Unterirdischen Gewässer. Binnengewässer 3:1–175

    Google Scholar 

  • Charette M (2001) Submarine groundwater discharge creates “Iron Curtain". Woods Hole Oceanogr Inst Ann Rep 2001:23–24

    Google Scholar 

  • Charette MA, Sholkovitz ER (2002) Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys Res Lett 29:10

    Google Scholar 

  • Chilton C (1894) The subterranean Crustacea of New Zealand, with some general remarks on the fauna of caves and wells. Trans Linn Soc Lond Ser 2 Zool 6:16–23

    Google Scholar 

  • Cho J-L, Humphreys WF, Lee S-D (2006) Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebr Syst 20:9–41

    Google Scholar 

  • Chow VT (ed)(1964) Handbook of applied hydrology. Oxford University Press, Oxford

  • Coineau N (2000) Adaptations to interstitial groundwater life. In: Wilkens, H, Culver, DC, Humphreys, WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 189–210

    Google Scholar 

  • Commander DC (2004) Exploitation of groundwater systems in arid Australia. In: Ho G, Kuruvilla M (eds) Sustainability of water resources international conference, Western Australia, November 2002. IWA, London, pp 111–120

    Google Scholar 

  • Committee on Animals as Monitors of Environmental Hazards of the US National Research Council (1991) Animals as sentinels of environmental health hazards. National Academy Press, Washington, DC

    Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1977–1978

    Google Scholar 

  • Cooper SJB, Bradbury JH, Saint KM et al (2007) Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Mol Ecol 16:1533–1544

    Google Scholar 

  • Cooper SJB, Saint KM, Taiti S et al (2008) Subterranean archipelago II: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebr Syst 22:195–203

    Google Scholar 

  • Council of Europe (1992) Convention on the conservation of the wildlife and natural environment of Europe Criteria for the selection of subterranean habitat of biological interest. Recommendation no 36 (1992) on the conservation of subterranean habitats Annexe 1 to the recommendation. Council of Europe, Bruxelles

    Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. J Caves Karst Stud 62:11–17

    Google Scholar 

  • Culver DC, Jones WK, Holsinger JR (1992) Biological and hydrological investigations of the Cedars, Lee County, Virginia: an ecologically significant and threatened karst area. In: Stanford JA, Simons JJ (eds) Proc First Int Conf Groundw Ecol. Am Water Resour Assoc Bethesda, MD, USA, pp 281–290

    Google Scholar 

  • Culver DC, Kane TC, Fong DW (1995) Adaptation and natural selection in caves: the evolution of Gammarus minus. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Danielopol DL (1989) Groundwater fauna associated with riverine aquifers. J N Am Benthol Soc 8:18–35

    Google Scholar 

  • Danielopol DL, Pospisil P (2001) Hidden biodiversity in the groundwater of the Danube Flood Plain National Park (Austria). Biodivers Conserv 10:1711–1721

    Google Scholar 

  • Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224

    Google Scholar 

  • Danielopol DL, Gibert J, Griebler C et al (2004) Incorporating ecological perspectives in European groundwater management policy. Environ Conserv 31:185–189

    Google Scholar 

  • Danielopol DL, Griebler C, Gunatilaka A et al (2007) Incorporation of groundwater ecology in environmental policy. In: Quevauviller P (eds) Groundwater science and policy. Royal Society of Chemistry, London, pp 671–689

    Google Scholar 

  • Danovaro R, Dell’Anno A, Fabiano M (2001) Bioavailability of organic matter in the sediments of the Porcupine Abyssal Plain, northeastern Atlantic. Mar Ecol Progr Ser 220:25–32

    Google Scholar 

  • Datry T, Malard F, Gibert J (2005) Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. J N Am Benthol Soc 24:461–477

    Google Scholar 

  • Delamare Deboutteville C (1960) Biologie des eaux souterraines littorales et continentales [Biology of littoral and continental subterranean water]. Hermann, Paris

    Google Scholar 

  • Department of Environment and Conservation (2008) Threatened species and ecological communities. Department of Environment and Conservation, Perth, Australia. http://www.naturebase.net/content/view/273/1208/. Cited 13 May 2008

  • Department of the Environment, Water, Heritage and the Arts (2008) EPBC Act List of Threatened Fauna. Department of the Environment, Water, Heritage and the Arts, Perth, Australia. http://www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl?wanted=fauna. Cited 13 May 2008

  • Dole MJ, Chessel D (1986) Stabilité physique et biologique des mileaux interstitiels: cas de deux stations du Haut Rhône [Physical and biological stability of the interstitial habitat: the case of two stations of the Upper Rhone]. Ann Limnol 22:69–81

    Google Scholar 

  • Dole-Olivier M-J, Marmonier P, Creuzé des Châtelliers M, Martin D (1994) Interstitial fauna associated with the alluvial floodplains of the Rhône Rover (France). In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 313–346

    Google Scholar 

  • Dove PM, Rimstidt JD (1994) Silica-water interactions. Rev Mineral 29:259–308

    Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Google Scholar 

  • Dunlap WJ, McNabb JF, Scalf MR et al (1977) Sampling for organic chemicals and microorganisms in the subsurface. EPA-600/2–77–176, US Environment Protection Agency, Ada, OK, 27 pp

  • Eamus D, Farrer SL (eds) (2006) Groundwater dependent ecosystems. Austral J Bot 54:91–237

  • Eberhard SM (1995) Impact of a limestone quarry on aquatic cave fauna at Ida Bay in Tasmania In: ‘Proc 11 Austr Cave and Karst Manage Assoc. Conf., Tasmania, May 1995, pp 125–137

  • Eberhard SM (1999) Cave fauna management and monitoring at Ida Bay Tasmania. Nature Conserv Rep 99/1, Parks and Wildlife Service, Tasmania, pp 1–37

    Google Scholar 

  • El Adnani M, Ait Boughrous A, Khebiza MY et al (2007) Impact of mining wastes on the physicochemical and biological characteristics of groundwater in a mining area in Marrakech (Morocco). Environ Tech 28:71–82

    Google Scholar 

  • English P, Spooner NA, Chappell J et al (2001) Lake Lewis basin, central Australia: environmental evolution and OSL chronology. Quat Int 83–85:81–101

    Google Scholar 

  • EPA (2003)Subterranean fauna: guidance for the assessment of environmental factors (in accordance with the Environmental Protection Act 1986) Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Guidance Statement No. 54, Environmental Protection Authority, Perth, Australia

    Google Scholar 

  • Essafi K, Mathieu J, Berrady I et al (1998) Qualité de l’eau et de la faune au niveau de forages artésiens dans la Plaine de Fès et la Plaine des Beni-Sadde: premiers résultats [Water quality and fauna from artesian bores in the Plain of Fès and the Plain of Blessed-Sadden]. Mém Biospéol 25:157–166

    Google Scholar 

  • Eugster HP, Jones BF (1979) Behaviour of major solutes during closed-basin brine evolution. Am J Sci 279:609–631

    Google Scholar 

  • European Groundwater Directive (2006) Directive 2006/118/ECEU GWD, of the European Parliament and of the Council of 12 December 2006. Off J Eur Comm L372:(19)

  • Farnleitner AH, Wilhartitz I, Ryzinska G et al (2005) Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Env Microbiol 7:1248–1259

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Fenwick GD, Thorpe HR, White PA (2004) Groundwater systems. In: Harding J, Mosely P, Pearson C, Sorrell B (eds) Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society, Christchurch, New Zealand, pp 29.1–29.18

    Google Scholar 

  • Finlay JB, Buhay JE, Crandall KA (2006) Surface to subsurface freshwater connections: phylogeographic and habitat analyses of Cambarus tenebrosus, a facultative cave-dwelling crayfish. Anim Conserv 9:375–387

    Google Scholar 

  • Finston TL, Johnson MS, Humphreys WF et al (2007) Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Mol Ecol 16:355–365

    Google Scholar 

  • Fisher SG, Likens GE (1973) Energy flow in Bear Brook New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439

    Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrology and geomorphology. Wiley, Chichester, UK

    Google Scholar 

  • Gebruk AV, Galkin SV, Vereshchaka AL et al (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Adv Mar Biol 32:93–130

    Google Scholar 

  • Gerritse RG (1998) Biogeochemical changes in aquifers from injected waste water: contribution to Peter Dillon’s ASR feasibility study. Report No 16/98, CSIRO Land and Water, Perth, Australia

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481

    Google Scholar 

  • Gibert J, Danielopol DL, Stanford JA (eds)(1994a) Groundwater ecology. Academic, London

  • Gibert J, Standford JA, Dole-Olivier M-J et al (1994b) Basic attributes of groundwater ecosystems and prospects for research. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 7–40

    Google Scholar 

  • Griebler C, Lueders T (2008) Microbial biodiversity in groundwater ecosystems. Freshw Biol (in press). doi:10.1111/j.1365–2427.2008.02013.x

  • Guzik MT, Cooper SJB, Humphreys WF et al (2008) Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebr Syst 22:205–216

    Google Scholar 

  • Haack SK, Bekins BA (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63–76

    Google Scholar 

  • Hahn HJ (2002) Distribution of the aquatic meiofauna of the Marbling Brook catchment (Western Australia) with reference to landuse and hydrogeological features. Arch Hydrobiol Suppl 139:237–263

    Google Scholar 

  • Hahn HJ (2005) Unbaited phreatic traps: a new method of sampling stygofauna. Limnologica 35:248–261

    Google Scholar 

  • Hahn HJ (2006) The GW-fauna-index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologia 36:119–139

    Google Scholar 

  • Hahn HJ (2007) Ökologische Bewertungsansätze für ein faunistisch begründetes Grundwassermonitoring: Bedeutung des hydrologischen Austauschs [Preliminary ecological evaluation for faunistically justified groundwater monitoring: Interpreting the hydrologic exchange]. Proc. DWA Seminar “Grundwasserökologie: Praxis und Forschung” Fulda, Germany, November 2007

  • Hahn HJ, Matzke D (2005) A comparison of stygofauna communities inside and outside groundwater bores. Limnologica 35:31–44

    Google Scholar 

  • Hamilton-Smith E, Eberhard S (2000) Conservation of cave communities in Australia. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 647–664

    Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater: the future of hydrogeology. Hydrogeol J 13:98–111

    Google Scholar 

  • Hardie LA, Eugster HP (1970) The evolution of closed basin brines. Mineral Soc Am Spec Publ 3:273–290

    Google Scholar 

  • Harter T (2003) Groundwater sampling and monitoring. FWQP Reference Sheet 11.4, Agriculture and Natural Resources Publication 8085, University of California, Davis, CA

    Google Scholar 

  • Hatton T (2001) Land use and catchment water balance. CSIRO Land and Water Tech Rep 18/01, Canberra, Australia

  • Hatton T, Evans R (1998) Dependence of ecosystems on groundwater and its significance to Australia. Land and Water Resour Res Dev Corp Occ Pap 12/98, LWRRDC, Canberra, Australia

  • Hayashi M, Rosenberry DD (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40:309–316

    Google Scholar 

  • Heim JA, Vasconcelos PM, Shuster DL et al (2006) Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethe, Hamersley province, Australia. Geology 34:173–176

    Google Scholar 

  • Hesse PP, Magee JW, van der Kaars S (2004) Late quaternary climates of the Australian arid zone: a review. Quat Int 118–119:87–102

    Google Scholar 

  • Hiscock KM, Rivett MO, Davison RM (eds)(2002) Sustainable groundwater development. Geol Soc Lond Spec Pub 193:1–352

  • Humphreys WF (1999a) Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In: Ponder W, Lunney D (eds) The other 99%: the conservation and biodiversity of invertebrates. Trans R Zool Soc New South Wales, Sydney, pp 219–227

  • Humphreys WF (1999b) Physico-chemical profile and energy fixation in Bundera Sinkhole: an anchialine remiped habitat in north-western Australia. J Roy Soc West Aust 82:89–98

    Google Scholar 

  • Humphreys WF (2000) First in, last out: Should aquifer ecosystems be at the vanguard of remediation assessment? In: Johnston CD (eds) Contaminated site remediation: from source zones to ecosystems, vol 1. Centre for Groundwater Studies, Wembley, Australia, pp 275–282

    Google Scholar 

  • Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. In: Humphreys WF, Harvey MS (eds) Subterranean biology in Australia 2000. Rec West Aust Mus Supp 64:63–83

  • Humphreys WF (2002) Keynote address: groundwater ecosystems in Australia: an emerging understanding. Proceedings of the International Groundwater Conference, Balancing the Groundwater Budget. Int Assoc Hydrogeol, Darwin, Australia, 12–17 May 2002, CD-ROM

  • Humphreys WF (2006a) Aquifers: the ultimate groundwater dependent ecosystems. In: Eamus SL Farrer D (eds) Special edition on groundwater dependent ecosystems. Aust J Bot 54:115–132

  • Humphreys WF (2006b) Groundwater fauna. Paper, 2006 Australian State of the Environment Committee, Department of the Environment and Heritage, Canberra. http://www.environment.gov.au/soe/2006/publications/emerging/fauna/pubs/fauna.pdf. Cited July 2008

  • Humphreys WF (2008) Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invert Syst 22(Spec pub):85–101

    Google Scholar 

  • Huws SA, McBain AJ, Gilbert P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98:238–244

    Google Scholar 

  • Iliffe TM (2000) Anchialine cave ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 59–76

    Google Scholar 

  • Iliffe TM, Jickells TD, Brewer MS (1984) Organic pollution of an inland marine cave from Bermuda. Mar Environ Res 12:173–189

    Google Scholar 

  • Jackson CR, Churchill PF, Roden EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82:555–566

    Google Scholar 

  • Jacobson G, Arakel AV (1986) Calcrete aquifers in the Australian arid zone. Proc Int Conf Groundwater Systems Under Stress, Austr Water Resour Counc, Brisbane, pp 515–523

  • Jasinska EJ (1995) Water requirements for cave dwelling fauna in the Yanchep area: proposed changes to environmental conditions. Gnangara Mound Groundwater Resources, Section 46. Appendix 3. Western Australian Water Authority, Perth, pp 113–119

    Google Scholar 

  • Jaume D, Boxshall GA, Humphreys WF (2001) New stygobiont copepods (Calanoida; Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia. Zool J Linn Soc Lond 133:1–24

    Google Scholar 

  • Jones B, Mulholland PJ (2000) Streams and ground waters. Academic, San Diego, CA

    Google Scholar 

  • Karanovic I (2004) Towards a revision of Candoninae (Crustacea, Ostracoda): on the genus Candonopsis Vavra, with description of new taxa. Subterranean Biol 2:91–108

    Google Scholar 

  • Karanovic T (2006) Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Rec West Aust Mus Suppl 70:1–239

    Google Scholar 

  • Karanovic I (2007) Candoninae Ostracodes from the Pilbara Region in Western Australia. Crustac Monogr 7:1–432

    Google Scholar 

  • Kinkle BK, Kane TC (2000) Chemolithoautotrophic micro-organisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 309–318

    Google Scholar 

  • Kinsey J, Cooney TJ, Simon KS (2007) A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say. Hydrobiologia 589:199–205

    Google Scholar 

  • Kota S, Borden RC, Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol Ecol 29:179–189

    Google Scholar 

  • Krige WG (2006) Hydrological/chemical aspects of the Upper Wonderfonteinspruit, with special reference to the impact water, pumped from the Western Basin Mine void, will have on this system. Revison 10. African Environmental Development, Sterkfontein, South Africa. Harmony, Randfontein, South Africa

  • Krumholz LR (2000) Microbial communities in the deep subsurface. Hydrogeol J 8:4–10

    Google Scholar 

  • Lake PS (2000) Disturbance, patchiness, and diversity in streams. J N Am Benthol Soc 19:573–592

    Google Scholar 

  • Lefébure T, Douady CJ, Gouy M et al (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Mol Ecol 15:1797–1806

    Google Scholar 

  • Leys R, Watts CHS, Cooper SJB et al (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834

    Google Scholar 

  • Loftus WF, Johnson RA, Anderson GH (1992) Ecological impacts of the reduction of groundwater levels in short-hydroperiod marshes in the Everglades. In: Stanford JA, Simons JJ (eds) Proc First Int Conf Groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 199–208

    Google Scholar 

  • Longley G (1992) The subterranean aquatic ecosystem of the Balcones Fault Zone Edwards Aquifer in Texas: threats from overpumping. In: Stanford JA, Simons JJ (eds) Proc First Int Conf groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 291–300

    Google Scholar 

  • Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominnat terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003

    Google Scholar 

  • MacDonald TR, Kitanidis PK, McCarty PL et al (1999) Mass transfer limitations for macroscale bioremediation modeling and implications on aquifer clogging. Ground Water 4:523–531

    Google Scholar 

  • Malard F (1995) Contribution à l’étude biologique de la qualité des eaux souterraines karstiques: application à un site atelier Nord-Montpelliérain (bassin de la source du Lez) [Contribution to the biological study of water quality of subterranean karstic waters: application to a study site at North-Montpellier (basin at the source of Lez)]. PhD Thesis, Université Claude Bernard, France

    Google Scholar 

  • Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshw Biol 41:1–30

    Google Scholar 

  • Malard F, Reygrobellet J-L, Mathieu J et al (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110

    Google Scholar 

  • Malard F, Plénet S, Gibert J (1996a) The use of invertebrates in ground water monitoring: a rising research field. Groundw Monitor Remediat 16:103–113

    Google Scholar 

  • Malard F, Mathieu J, Reygrobellet JL et al (1996b) Biomonitoring groundwater contamination: application to a karst area in southern France. Aquat Sci 28:158–187

    Google Scholar 

  • Malard F, Datry T, Gibert J (2005) Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer. J Contam Hydrol 79:156–164

    Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifères karstiques [Contribution to the hydrodynamic study of karstic aquifers]. Annls Spéléol 30:21–124

    Google Scholar 

  • Mann AW, Deutscher RL (1978) Hydrogeochemistry of a calcrete-containing aquifer near Lake Way, Western Australia. J Hydrol 38:357–377

    Google Scholar 

  • Margat J (1994) Groundwater operations and management. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 505–522

    Google Scholar 

  • Marshall MC, Hall RO (2004) Hyporheic invertebrates affect N cycling and respiration in stream sediment microcosms. J N Am Benthol Soc 23:416–428

    Google Scholar 

  • Mattison RG, Harayama S (2005) The soil flagellate Heteromita globosa accelerates bacterial degradation of alkylbenzenes through grazing and acetate excretion in batch culture. Microb Ecol 49:142–150

    Google Scholar 

  • Mattison RG, Taki H, Harayama S (2002) The bacterivorous soil flagellate Heteromita globosa reduces bacterial clogging under denitrifying conditions in sand-filled aquifer columns. App Environ Microbiol 68:4539–4545

    Google Scholar 

  • McCrea AF, Balakumar B (2004) Sustainability of irrigation in semi-arid and arid zones of Western Australia. In: Ho G, Kuruvilla M (eds) Sustainability of water resources international conference, Western Australia, November 2002. IWA, London, pp 71–79

    Google Scholar 

  • McDonald RJ, Russill NRW, Miliorizos M et al (1998) A geophysical investigation of saline intrusion and geological structure beneath areas of tidal coastal wetland at Langstone Harbour, Hampshire, UK. In: Robbins NS (ed) Groundwater pollution: aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:77–94

  • Mermillod-Blondin F, Nogaro G, Datry T et al (2005) Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ Pollut 134:57–69

    Google Scholar 

  • Messouli M (2006) What can karstic organisms tell us about groundwater functioning and water quality? BALWOIS 2006 Conference on water observation and information system for decision support, 23–26 May 2006, Ohrid, Morocco

  • Miller SW, Wooster D, Li J (2007) Resistance and resilience of macroinvertebrates to irrigation water withdrawals. Freshw Biol 55(12):2494–2510. doi:10.1111/j.1365–2427.2007.01850.x

    Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125

    Google Scholar 

  • Morgan KH (1993) Development, sedimentation and economic potential of palaeoriver systems of the Yilgarn Craton of Western Australia. Sediment Geol 85:637–656

    Google Scholar 

  • Mösslacher F, Griebler C, Notenboom J (2001) Biomonitoring of groundwater systems: methods, applications and possible indicators among the groundwater biota. In: Griebler C, Danielopol DL, Gibert J et al (eds) Groundwater ecology: a tool for management of water resources. Office for Official Publications of the European Communities, Luxembourg, pp 173–182

    Google Scholar 

  • MPR (2002) Guidelines for the protection of surface and groundwater resources during exploration drilling. Department of Minerals and Energy, Perth, Australia

    Google Scholar 

  • Mudd GM (2004) Critical review of acid in situ leach uranium mining: 1. USA and Australia. Environ Geol 41:390–403

    Google Scholar 

  • Mühlherr IH, Hiscock KM, Dennis PF et al (1998) Changes in groundwater chemistry due to rising groundwater levels in the London Basin between 1963 and 1994. In: Robbins NS (ed) Groundwater pollution: aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:47–62

  • Mylroie JE, Carew JL (1995) Karst development on carbonate islands. In: Budd DA, Saller AH, Harris PA (eds) Unconformities in carbonate strata: their recognition and the significance of associated porosity. AAPG Memoir 63, AAPG, Tulsa, OK, pp 55–76

  • Nachtnebel HP, Kovar K (1991) Hydrological basis of ecological sound management of soil and groundwater. International Association of Hydrological Sciences Publication 202, Wallingford, UK

  • Naiman RJ, Bunn SE, Nilsson C et al (2002) Legitimizing fluvial ecosystems as users of water: an overview. Environ Manage 30:455–467

    Google Scholar 

  • Nield SP, Townley LR, Barr AD (1994) A framework for quantitative analysis of surface water–groundwater interaction: flow geometry in a vertical section. Water Resour Res 30:2461–2475

  • Nogaro G, Mermillod-Blondin F, Francois-Carcaillet F et al (2006) Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshw Biol 51:1458–1473

    Google Scholar 

  • Notenboom J, Plénet S, Turquin M-J (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 477–504

    Google Scholar 

  • Novarino G, Warren A, Butler H et al (1997) Protistan communities in aquifers: a review. Microbiol Rev 20:261–275

    Google Scholar 

  • Packard AS (1871) On the crustaceans and insects. Am Nat 5:744–761

    Google Scholar 

  • Pérez del Villar L, Garralón A, Delgado A et al (2004) Hydrogeochemical evolution and C isotope study of groundwaters from “Mina Fe” U deposit (Salamanca, Spain): implications for processes in radwaste disposal. App Geochem 20(3):465–485. doi:10.1016/j.apgeochem.2004.09.015

  • Perfit MR, Cann JR, Fornari DJ et al (2003) Interaction of sea water and lava during submarine eruptions at mid-ocean ridges. Nature 426:62–65

    Google Scholar 

  • Pipan T, Culver D (2007a) Epikarst communities: biodiversity hotspots and potential water tracers. Environ Geol 53:265–269

    Google Scholar 

  • Pipan T, Culver D (2007b) Copepod distribution as an indicator of epikarst system connectivity. Hydrogeol J 15:817–822

    Google Scholar 

  • Playford PE (2001) Subterranean biotas in Western Australia. Report for the Environmental Protection Authority, Perth, Australia

    Google Scholar 

  • Plénet S, Marmonier P, Gibert J, Stanford JA, Bodergat A-M, Schmidt CM (1992) Groundwater hazard evaluation: a perspective for the use of interstitial and benthic invertebrates as sentinels of aquifer metallic contamination. In: Stanford JA, Simons JJ (eds) Proc. First Int. Conf. groundwater ecology. Am Water Resour Assn, Bethesda, MD, pp 319–329

    Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27

    Google Scholar 

  • Pohlman JW, Cifuentes LA, Iliffe TM (2000) Food web dynamics and biogeochemistry of anchialine caves: a stable isotope approach. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 345–357

    Google Scholar 

  • Por FD (2007) Ophel: a groundwater biome based on chemoautotrophic resources: the global significance of the Ayyalon cave finds, Israel. Hydrobiologia 592:1–10

    Google Scholar 

  • Pora EA (1969) L’importance du facteur rhopique (équilibre ionique) pour la vie aquatique [The importance of the rhopic factor (ionic balance) for the aquatic life]. Ver Int Verein Theor Ang Limnol 7:970–986

    Google Scholar 

  • Pospisil P (1994) The groundwater fauna of a Danube aquifer in the “Lobau” wetland in Vienna Austria. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 347–366

    Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Pyle GG, Mirza RS (2007) Copper-impaired chemosensory function and behavior in aquatic animals. Hum Ecol Risk Assess 13:492–505

    Google Scholar 

  • Racovitza EG (1907) Essai sur les problèmes biospéologiques [Essay on biospeleological problems]. Biospéologica 1. Arch Zool Exp Gén 4:371–488

    Google Scholar 

  • Radke L (2000) Solute divides and chemical facies in south-eastern Australian salt lakes and the response of ostracods in time (Holocene) and space. PhD Thesis. Australian National University, Canberra

    Google Scholar 

  • Radke L, Juggins S, Halse SA et al (2003) Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Mar Freshw Res 54:895–912

    Google Scholar 

  • Reeves J, Deckker P, Halse S (2007) Groundwater Ostracods from the arid Pilbara region of northwestern Australia: distribution and water chemistry. Hydrobiologia 585:99–118

    Google Scholar 

  • Reilly TE (1993) Analysis of ground-water systems in freshwater-saltwater environments. In: Alley WM (eds) Regional ground-water quality. Van Nostrand, New York, pp 443–469

    Google Scholar 

  • Robins NS (ed) (1998) Groundwater pollution, aquifer recharge and vulnerability. Geol Soc Lond Spec Pub 130:1–224

  • Rockhold ML, Yarwood RR, Niemet MR et al (2002) Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Water Res 25:477–495

    Google Scholar 

  • Ronen D, Magaritz M, Levy I (1986) A multi-layer sampler for the study of detailed hydrochemical profiles in groundwater. Water Res 20:311–315

    Google Scholar 

  • Ronen D, Magaritz M, Almon E et al (1987a) Anthropogenic anoxification (‘Eutrophication’) of the water table in a deep phreatic aquifer. Water Resour Res 23:1554–1560

    Google Scholar 

  • Ronen D, Magaritz M, Gvirtzman H et al (1987b) Microscale chemical heterogeneity in groundwater. J Hydrol 92:173–178

    Google Scholar 

  • Rouch R (1977) Considerations sur l’écosystème karstique [Considerations on the karstic ecosystem]. CR Acad Sci Paris, Série D 284:1101–1103

    Google Scholar 

  • Rouch R (1986) Sur l’écologie des eaux souterraines dans le karst [On the ecology of subterranean water in karst]. Stygologia 2:352–398

    Google Scholar 

  • Rouch R, Pitzalis A, Descouens A (1993) Effets d’un pompage à gros dèbit sur le peuplement des Crustacès d’un aquifére karstique [The effect of large flow pumping on the population of crustaceans in a karstic aquifer]. Annal Limnol 29:15–29

    Article  Google Scholar 

  • Rutherford J, Roy V, Johnson SL (2005) The hydrogeology of groundwater dependent ecosystems in the Northern Perth Basin, Department of Environment, Hydrogeological Record Series, HG11, Perth, Australia

  • Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 319–343

    Google Scholar 

  • Sarbu SM, Galdenzi S, Menichetti M et al (2000) Geology and biology of Frasassi Caves in Central Italy: an ecological multidisciplinary study of a hypogenic underground karst system. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, pp 359–378

    Google Scholar 

  • Scarsbrook MR, Fenwick GD (2003) A preliminary assessment of crustacean distribution patterns in New Zealand groundwater aquifers. NZ J Mar Freshw Res 37:405–413

    Article  Google Scholar 

  • Schmidt SI, Hahn HJ, Hatton TJ et al (2007a) Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583:1–19

    Google Scholar 

  • Schmidt SI, Hellweg J, Hahn HJ et al (2007b) Does groundwater influence the sediment fauna beneath a small, sandy stream? Limnologica 37:208–225. doi:10.1016/j.limno.2006.12.002

    Google Scholar 

  • Schminke HK (1974) Mesozoic intercontinental relationships as evidenced by bathynellid crustacea (Syncarida: Malacostraca). Syst Zool 23:157–164

    Google Scholar 

  • Seymour JR, Humphreys WF, Mitchell JG (2007) Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Micro Ecol 50:11–24

    Google Scholar 

  • Simon KS, Buikema AL (1997) Effects of organic pollution on an Appalachian cave: changes in macroinvertebrate populations and food supplies. Am Midl Natur 138:387–401

    Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406

    Google Scholar 

  • Sinclair JL, Kampbell DH, Cook ML et al (1993) Protozoa in subsurface sediments from sites contaminated with aviation gasoline or jet fuel. App Environ Microbiol 59:467–472

    Google Scholar 

  • Sinton LW (1984) The macroinvertebrates in a sewage-polluted aquifer. Hydrobiologia 119:161–169

    Google Scholar 

  • Sket B (1986) Ecology of the mixohaline hypogean fauna along the Yugoslav coast. Stygologia 2:317–338

    Google Scholar 

  • Sket B (1996) The ecology of anchihaline caves. Trends Ecol Evol 1:221–255

    Google Scholar 

  • Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338

    Google Scholar 

  • Stanford JA, Ward JV, Ellis BK (1994) Ecology of the alluvial aquifers of the Flathead River, Montana. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic, London, pp 367–389

    Google Scholar 

  • Stocker ZSJ, Williams DD (1972) A freeze core method for describing the vertical distribution of sediments in a stream bed. Limnol Oceanogr 17:136–138

    Article  Google Scholar 

  • Testa JM, Charette MA, Sholkovitz ER et al (2002) Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biol Bull 203:255–256

    Google Scholar 

  • Tomlinson M, Boulton AJ, Hancock PJ, Cook PG (2007) Deliberate omission or unfortunate oversight: should stygofaunal surveys be included in routine groundwater monitoring programs? Hydrogeol J 15:1317–1320

    Google Scholar 

  • Turguin MJ (1981) La pollution des eaux souterraines: incidence sur les biocénoses souterraines [The pollution of subterranean water: incidence in underground biocenoses]. In: Actes Colloq Nat Prot Eaux Souterraines 1(1980):341–347

  • Tyrrel SF, Howsam P (1997) Aspects of the occurrence and behaviour of iron bacteria in boreholes and aquifers. Q J Eng Geol Hydrogeol 30:161–169

    Google Scholar 

  • Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. Geol Soc Lond Spec Pub 58:1–24

    Google Scholar 

  • US Fish and Wildlife Service (2002) Notice of availability of the approved recovery plan for the Illinois Cave Amphipod (Gammarus acherondytes). US Fish and Wildlife Service, Washington, DC, Available Online. http://www.fws.gov/policy/library/02fr63442.html. Cited 13 May 2008

  • Vengosh A, Keren R (1996) Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. J Contamin Hydrol 23:347–360

    Google Scholar 

  • Vermeulen J, Whitten T (1999) Biodiversity and cultural property in the management of limestone resources: lessons from East Asia. The World Bank, Washington, DC

    Google Scholar 

  • Walker G (1999) Lake of dreams. New Scientist 4 Dec 1999:34–37

    Google Scholar 

  • Wanty RB Schoen R (1991) A review of the chemical processes affecting the mobility of radionuclides in natural waters, with applications. In: Gundersen LCS, Wanty RB (eds) Field studies of radon in rocks, soils, and water. US Geol Surv Bull 1971:183–194

  • Watts CHS, Humphreys WF (1999) Three new genera and five new species of Dytiscidae (Coleoptera) from underground waters in Australia. Rec S Aust Mus 32:121–142

    Google Scholar 

  • Watts CHS, Humphreys WF (2004) Thirteen new Dytiscidae (Coleoptera) of the genera Boongurrus Larson, Tjirtudessus Watts & Humphreys and Nirripirti Watts and Humphreys, from underground waters in Australia. Tran R Soc S Aust 128:99–129

    Google Scholar 

  • White WB, White EL (2003) Gypsum wedging and cavern breakdown: studies in the Mammoth Cave System, Kentucky. J Cave Karst Stud 65:43–52

    Google Scholar 

  • Wilkens H, Culver DC, Humphreys WF (eds) (2000) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam

  • Williams WD, Boulton AJ, Taaffe RG (1990) Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197:257–266

    Google Scholar 

  • Wilson GDF (2007) Global diversity of isopod crustaceans (Crustacea; Isopoda). Hydrobiologia 595:231–240. doi:10.1007/s10750–007–9019-z

    Google Scholar 

  • Wilson GDF (2008) Groundwater Gondwana: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebr Syst 22:301–310

    Google Scholar 

  • Winde F (2006) Long-term impacts of gold and uranium mining on water quality in Dolomitic Regions: examples from the Wonderfonteinspruit catchment in South Africa. In: Broder JM, Hasche-Berger A (eds) Uranium in the environment: mining impact and consequences. Springer, Berlin, pp 807–816

    Google Scholar 

  • Winter TC, Harvey JW, Franke OL et al (1998) Ground water and surface water: a single resource. Circular 1139, United States Geological Survey, Denver, CO

    Google Scholar 

  • Wolff WJ (1973) The estuary as a habitat: an analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zool Verh 126:1–242

    Google Scholar 

Download references

Acknowledgements

This paper has its genesis in a keynote address to the International Groundwater Conference, Balancing the Groundwater Budget, Darwin, Australia. 12–17 May 2002 (Humphreys 2002) invited by Peter Jolly, the convenor. I thank the editors of this volume for inviting this contribution. The South African Water Research Commission facilitated my visit to South Africa in 2007. I greatly appreciate the detailed and constructive comments of the reviewers and editors that together have led to a much improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. F. Humphreys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphreys, W.F. Hydrogeology and groundwater ecology: Does each inform the other?. Hydrogeol J 17, 5–21 (2009). https://doi.org/10.1007/s10040-008-0349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0349-3

Keywords

Navigation