Advertisement

Hydrogeology Journal

, Volume 16, Issue 7, pp 1411–1426 | Cite as

Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling

  • J. Moustadraf
  • M. RazackEmail author
  • M. Sinan
Report

Abstract

The aquifer of the Chaouia Coast, Morocco constitutes an example of groundwater resources subjected to intensive and uncontrolled withdrawals in a semi-arid region. The analysis of the trends of precipitation and piezometric levels of the Chaouia coastal aquifer, with the use of moving averages, emphasized the impact of the climate on the groundwater resources of the system. The results showed that the periods 1977–1993 and 1996–2000 are characterized by a deficit in precipitation, although the precipitation increased slightly during the periods 1973–1977 and 1993–1996. Numerical modeling of the Chaouia aquifer showed that the groundwater resources of this system are less sensitive to the variations in precipitation. Severe degradation of the resource is related to intensive pumping during the periods of drought, which has forced abandonment of wells due to seawater intrusion.

Keywords

Coastal aquifers Arid regions Numerical model Morocco Climate change 

Evaluation des impacts du changement climatique sur l’aquifère côtier de la Chaouïa,Maroc, en utilisant la modélisation numérique

Résumé

L’aquifère de la Côte de la Chaouïa,Maroc constitue un exemple de ressource en eau souterraine sujette à des prélèvements intensifs et non contrôlés dans une région semi-aride. L’analyse des tendances de l’évolution des précipitations et des niveaux piézométriques de l’aquifère côtier de la Chaouïa, par l’utilisation des moyennes mobiles, a mis en relief l’impact du climat sur les ressources en eau souterraine du système. Les résultats ont montré que les périodes 1977–1993 et 1996–2000 sont caractérisées par un déficit de précipitations, bien que les précipitations aient augmenté légèrement durant les périodes 1973–1977 et 1993–1996. La modélisation numérique de l’aquifère de la Chaouïa a montré que les ressources en eau souterraine de ce système sont moins sensibles aux variations des précipitations. Une dégradation sévère de la ressource est associée à un pompage intensif pendant les périodes de sécheresse, qui ont contraint à l’abandon de puits du fait de l’intrusion d’eau de mer.

Evaluación de los impactos de cambios climáticos en el acuífero costero Chaouia,Marruecos, usando modelación numérica

Resumen

El acuífero costero de Chaouia, Marruecos, constituye un ejemplo de recursos hídricos subterráneos sujetos a una extracción intensiva y no controlada en una región semiárida. El análisis de las tendencias de precitación y de los niveles piezométricos en el acuífero costero Chaouia, mediante el uso de promedios móviles, enfatiza el impacto del clima en los recursos hídricos subterráneos. Los resultados mostraron que los períodos 1977–1993 y 1996–2000 se caracterizan por un déficit de las precipitaciones, aunque tales precitaciones aumentaron ligeramente durante los períodos 1973–1977 y 1993–1996. La modelación numérica del acuífero Chaouia indica que los recursos subterráneos del sistema son poco sensibles a las variaciones en las precitaciones. La severa degradación de los recursos hídricos subterráneos se relaciona con bombeos intensivos durante períodos de sequía, lo que ha llevado al abandono de pozos debido a intrusión marina.

Notes

Acknowledgements

The authors would like to thank the ‘Agence du Bassin Hydraulique de Bouregreg’ and Prof. Y. Fakir (University of Marrakesh) for providing some of the data. They are also thankful to the Managing Editor (Prof. P. Renard), the Associate Editor and two reviewers for their helpful comments and suggestions.

References

  1. Abrahart RJ, See L (2000) Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. J Hydrol Proc 14:2157–2172CrossRefGoogle Scholar
  2. Allen DM, Mackie DC, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Coloumbia, Canada. Hydrogeol J 12:270–290CrossRefGoogle Scholar
  3. Amraoui F (1988) Apports de l’analyse hydrogéologique comparative. Exemple des nappes côtières de Temara et de la Chaouia, Ouest Marocain [Contributions of comparative hydrogeologic analysis. Example of the coastal Temara and Chaouia aquifers, West Morocco]. PhD Thesis, University of Montpellier, France, 126 ppGoogle Scholar
  4. Arnell NW (1998) Climate change and water resources in Britain. Clim Change 39:83–110CrossRefGoogle Scholar
  5. Arnell NW (1999) Climate change and global water resources. Global Environ Change 9:31–49CrossRefGoogle Scholar
  6. Beeton AM (2002) Large freshwater lakes: present state, trends, and future. Environ Conserv 29(1):21–38Google Scholar
  7. Bentayeb A (1972) Etude hydrogéologique de la Chaouia Côtière avec essais de simulation mathématique en régime permanent, Maroc [Hydrogeological study of the Chaouia Coast and steady state modeling attempt, Morocco]. PhD Thesis, University of Montpellier, France, 151 ppGoogle Scholar
  8. Brouyère S, Carabin G, Dassargues A (2004) Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol J 12:123–134CrossRefGoogle Scholar
  9. Castany G (1998) Hydrogéologie: principes et méthodes [Hydrogeology: principles and methods]. Dunod, Paris, 238 ppGoogle Scholar
  10. Chen ZH, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260:102–117CrossRefGoogle Scholar
  11. Chen ZH, Grasby SE, Osadetz KG (2004) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62CrossRefGoogle Scholar
  12. Cole JA, Oakes DB, Slade S, Clark KJ (1994) Potential impacts of climatic change and of sea-level rise on the yields of aquifer, river and reservoir sources. J Inst Water Environ Manage 8:591–606CrossRefGoogle Scholar
  13. COP7 (2001) Royaume du Maroc: Communication Nationale Initiale à la Convention Cadre des Nations Unies sur les Changements Climatiques [Kingdom of Morocco: Initial National Communication to the UN Convention on Climate Changes}. Ministère de l’Aménagement du Territoire de l’Habitat et de l’Environnement, MoroccoGoogle Scholar
  14. Diop Ngom F, Malou R (2002) Contrainte climatique des nappes souterraines en zone Soudano-Sahelienne: cas de la nappe phréatique du bassin de la Nema dans la région de Sine au Centre Ouest du Sénégal [Climatic constraint on groundwaters in the Soudano-Sahalian zone: case of the ground water of the basin of Nema in the area of Sine in west central Senegal]. Afr J Sci Tech 3(1):44–50Google Scholar
  15. DRPE (1996) Etude hydrogéologique de la nappe aquifère de la Chaouia Côtière [Hydrogeological study of the Chaouia coastal aquifer]. Paper, DRPE, Rabat, Morocco, 11 ppGoogle Scholar
  16. DRPE (1999a) Etude hydrogéologique de la nappe aquifère de la Chaouia Côtière: modélisation de la nappe en régime permanent [Hydrogeological study of the Chaouia coastal aquifer: steady state modeling]. DRPE, Rabat, Morocco, 52 ppGoogle Scholar
  17. DRPE (1999b) Etude hydrogéologique de la nappe aquifère de la Chaouia Côtière, Modélisation de la nappe en régime transitoire [Hydrogeological study of the Chaouia coastal aquifer: transient state modeling]. DRPE, Rabat, Morocco, 51 ppGoogle Scholar
  18. Englund E, Sparks A (1991) GEO-EAS, Geostatistical Environmental Assessment Software. 600/8–91/008, USEPA, Washington, DC, 186 ppGoogle Scholar
  19. Fakir Y, Zerouali A, Aboufirrasi M, Bouabdelli M (2001) Exploitation et salinité des aquifères de la Chaouia Côtière, littoral atlantique, Maroc [Exploitation and salinity of the aquifers of Coastal Chaouia, littoral Atlantic, Morocco]. J Afr Earth Sci 32:791–801CrossRefGoogle Scholar
  20. Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210:242–258CrossRefGoogle Scholar
  21. Gleick PH (1986) Methods for evaluating the regional hydrologic impacts of global climatic change. J Hydrol 88:97–116CrossRefGoogle Scholar
  22. Hafmann N, Mortsch L, Donner S, Dunacan K, Kreutzwiser R, Kulshreshtha S, Piggott A, Schellenberg S, Schertzer B and Slivizky M (2000) Climate change and variability: impacts on Canadian water, Environmental Adaptation Research Group, Environment Canada, University of Waterloo, Canada, 120 ppGoogle Scholar
  23. Harbaugh AW, Banta ER, Hill MC and McDonald MG (2000) Modflow 2000, the US Geological Survey Modular Ground-Water Model. User guide to Modularization concepts and the ground-water Flow process, US Geol Surv Open-File Rep 00–92, 121 ppGoogle Scholar
  24. Isaaks EH and Srivastava MR (1989) An introduction to applied geostatistics. Oxford University Press, New York, 561 ppGoogle Scholar
  25. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand, 1951. J Chem Metal Mining Soc S Afr 52:119–139Google Scholar
  26. Lecointre G, Gigout M (1949) Carte géologique provisoire des environs de Casablanca 1/200000 et sa notice explicative [Provisional geological map of the surroundings of Casablanca at 1/200000 and its explanatory leaflet]. Notes Mém Serv Géol Maroc 72:28Google Scholar
  27. Ljung G, Box GEP (1979) The likelihood functions of stationary autoregressive moving average models. Biometrika 66:265–270CrossRefGoogle Scholar
  28. Maathuis H, Thorleifso LH (2000) Potential impact of climate change on prairie groundwater supplies: review of current knowledge. Publ. No.11304–2E00, Saskatchewan Research Council, Saskatoon, SK, CanadaGoogle Scholar
  29. Mahé G, Olivry JC, Dessouassi R, Orange D, Bamba F, Sevrat E (2000) Relation eaux de surface-eaux souterraines d’une rivière tropicale au Mali [Relationship between surface water and groundwater in a tropical river in Mali]. CR Geosci 330:689–692Google Scholar
  30. Marjoua A (1995) Approche géochimique et modélisation hydrodynamique de l’aquifère de la Chaouia Côtière (Maroc): origines de la salinisation des eaux [Geochemical analysis and flow modeling of the Chaouia Coast aquifer: origin of the water’s salinity]. PhD Thesis, University of Paris 6, France, 179 ppGoogle Scholar
  31. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel for Climate Change (IPCC). Cambridge University Press, CambridgeGoogle Scholar
  32. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of Water Resources Investigations, book 6, US Geological Survey, Reston, VAGoogle Scholar
  33. Menzel L, Burger G (2002) Climate change scenarios and runoff response in the Mulde catchment (southern Elbe, Germany). J Hydrol 267:53–64CrossRefGoogle Scholar
  34. Mimikou MA, Batlas E, Varanou E, Pantazis K (2000) Regional impacts of climate change on water resources quantity and quality indicators. J Hydrol 234:95–109CrossRefGoogle Scholar
  35. Moustadraf J (2006) Modélisation numérique d’un système aquifère côtier. Etude de l’impact de la sécheresse et de l’intrusion marine. La Chaouia Côtière, Maroc. [Numerical modeling of a coastal aquifer: analysis of the drought impact and seawater intrusion: the Chaouia Coast, Morocco]. PhD Thesis, University of Poitiers, France, 210 ppGoogle Scholar
  36. Moustadraf J, Razack M, Sinan M (2006) Impact des changements climatiques sur la recharge du système aquifère de la Chaouia côtière, Maroc. [Climate changes impacts on the Chaouia Coast aquifer recharge, Morocco]. Proc. Int. Symp. GIRE3D, CM-AIH, Marrakesh, Morocco, 6 ppGoogle Scholar
  37. xRamon S (1978) La prévision des niveaux piézomètriques: trois remarques sur une longue série d’observation [Forecasting groundwater levels: three remarks on a long recording]. Bull BRGM 3:239–245Google Scholar
  38. Rutulis M (1989) Groundwater drought sensitivity of southern Manitoba. Can Water Res J 14:18–33CrossRefGoogle Scholar
  39. Scibek J, Allen DM (2006) Comparing modelled responses of two high-permeability unconfined aquifers to predicted climate change. Global Planet Change 50:50–62CrossRefGoogle Scholar
  40. Sun G, Amatya DM, McNulty SG, Skaggs RW, Hughes JH (2000) Climate change impacts on the hydrology and productivity of a pine plantation. J Am Water Res Assoc 36(2):367–374CrossRefGoogle Scholar
  41. Westmacott JR, Burn DH (1997) Climate change effects on the hydrological regime within the Churchill-Nelson River Basin. J Hydrol 202:263–279CrossRefGoogle Scholar
  42. Whitfield PH, Taylor E (1998) Apparent recent changes in hydrology and climate of coastal British Columbia. In: Mountains to sea: human interaction with the hydrologic cycle. Proc. Can. Water Res. Assoc. 51st Annual Conf., Victoria, BC, November 1998, pp 22–29Google Scholar
  43. Younsi A (2001) Méthodologie de mise en évidence des mécanismes de salure des eaux souterraines côtières en zone semi-aride irriguée, Chaouia Côtière, Maroc [Methodology of description of the mechanisms of coastal groundwater salinity in an irrigated semi-arid zone, Coastal Chaouia, Morocco]. PhD Thesis, University Chouaib Doukkali, Morocco, 175 ppGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.University of Poitiers, UFR SFAPoitiers CedexFrance
  2. 2.Ecole Hassania des Travaux Publics, Département de l’HydrauliqueCasablancaMorocco

Personalised recommendations