Skip to main content
Log in

Hypersaline groundwater genesis assessment through a multidisciplinary approach: the case of Pozzo del Sale Spring (southern Italy)

Détermination de la genèse des eaux souterraines hypersalines au moyen d’une approche multidisciplinaire : le cas de Pozzo del Sale Spring (Italie méridionale)

Evaluación de la genesis de aguas subterráneas hipersalinas a través de una aproximación multidisciplinaria: el caso del manatial de Pozzo del Sale (sur de Italia)

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A tool, based on a multidisciplinary field investigation approach for studying the characteristics of a hypersaline spring, was developed and its effectiveness tested on a spring in southern Italy; a preliminary model of the aquifer system at medium and local scale was derived. Hydrologic measurements, vertical electric soundings, and chemical and isotopic (δ18O, δ2H, 3H) analyses were undertaken, along with microbiological analyses and species identification. These demonstrate the coexistence of hypersaline and fresh water, generating a significant diversification of the groundwater hydrochemical signature. The isotopic signature shows that both types of water have a meteoric origin. Microbial contamination of fecal origin indicates the mixing of hyper- and low- saline water related to local infiltration. The hypersaline groundwater flows in confined horizons within a sequence that is mainly of fractured clays. These horizons are probably concentrated where well-developed fracture network and dissolution openings within evaporitic rocks enhance fluid flow. In a wider context, this study determines that microbiological pollution of saline groundwater may not be detected if using nonhalophilic bacterial indicators such as fecal coliforms. Fecal enterococci are better indicators, due to their higher halotolerance.

Résumé

Un outil, basé sur une approche de recherche de terrain multidisciplinaire pour étudier les caractéristiques d’une source hypersaline, a été développé et son efficacité testée sur une source en Italie méridionale; un modèle préliminaire du système aquifère à échelle moyenne et locale en a été dérivé. Des mesures hydrologiques, des sondages électriques verticaux, et des analyses chimiques et isotopiques (δ18O, δ2H, 3H) ont été réalisés, en même temps que des analyses microbiologiques et des identifications d’espèces. Celles-ci démontrent la coexistence d’eau hypersaline et d’eau douce, engendrant une diversité remarquable de la signature hydrochimique de l’eau souterraine. La signature isotopique montre que les deux types d’eau ont une origine météorique. Une contamination microbienne d’origine fécale révèle le mélange d’eau hypersaline et d’eau peu saline en relation avec une infiltration locale. L’eau souterraine hypersaline s’écoule dans des horizons captifs au sein d’une séquence qui se compose essentiellement d’argile fracturée. Ces horizons sont probablement concentrés là où un réseau de fractures bien développé et de cavités de dissolution au sein de roches évaporitiques accroît l’écoulement du fluide. Dans un contexte plus large, cette étude détermine que la pollution microbiologique d’une eau souterraine saline peut ne pas être détectée par l’utilisation d’indicateurs bactériens non halophiles, tels que les coliformes fécaux. Les entérocoques fécaux sont de meilleurs indicateurs, du fait de leur plus forte halotolérance.

Resumen

Con bases en una investigación de campo multidisciplinaria, se ha desarrollado una herramienta para estudiar las características de un manantial hipersalino, y su efectividad ha sido probada en un manantial del sur de Italia; se ha derivado un modelo del sistema acuífero a escalas intermedia y local. Se llevaron a cabo medidas hidrológicas, sondeos eléctricos verticales, mediciones químicas e isotópicas, además de análisis microbiológicos e identificación de especies (δ18O, δ2H, 3H). Se demostró la coexistencia de agua hipersalinas y agua dulce, lo que genera una muy significativa diversificación de la firma hidroquímica de las aguas subterráneas. Las determinaciones isotópicas indican que ambos tipos de aguas tienen origen meteórico. La contaminación bacteriana, de origen fecal, indica que la mezcla de aguas hipersalinas y de baja salinidad se relaciona con la infiltración local. El flujo subterráneo de agua hipersalina se produce en horizontes confinados dentro de una secuencia mayormente compuesta de arcillas fracturadas. Estos horizontes están probablemente concentrados donde la red de fracturas está bien desarrollada y los sectores con aperturas de disolución en rocas evaporíticas incrementan el flujo. En un contexto más amplio, este estudio determina que la polución microbiológica de las aguas salinas no se detecta con indicadores bacterianos no halofíticos, tales como coliformes fecales. Los enterococos fecales son mejores indicadores, debido a su mayor halotolerancia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Albertini MC, Dachà M, Teodori L, Conti ME (2007) Drinking mineral waters: biochemical effects and health implications: the state-of-the-art. Int J Environmental Health 1:153–169

    Article  Google Scholar 

  • Allocca V, Celico F, Petrella E, Marzullo G, Naclerio G (2008) The role of land use and environmental factors on microbial pollution of mountainous limestone aquifers. Environ Geol. DOI 10.1007/s00254–007–1002–5

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Andersson JE, Ekman L, Nordqvist R, Winberg A (1991) Hydraulic testing and modeling of a low-angle fracture zone at Finnsjon, Sweden. J Hydrol 126:45–77

    Article  Google Scholar 

  • Basso C, Di Nocera S, Matano F, Torre M (1996) Successioni sedimentarie del Messiniano superiore e del Pliocene inferiore-medio in Irpinia settentrionale [Upper Messinian–middle Pliocene sedimentary successions in northern Irpinia]. Boll Soc Geol It 115:701–715

    Google Scholar 

  • Becker MW, Metge DW, Collins SA, Shapiro AM, Harvey RW (2003) Bacterial transport experiments in fractured crystalline bedrocks. Ground Water 41:682–689

    Article  Google Scholar 

  • Bernard T, Pocard JA, Perroud B, Le Rudulier D (1986) Variations in the response of salt-stressed Rhizobium strains to betaines. Arch Microbiol 143:359–364

    Article  Google Scholar 

  • Bitton G, Farrah SR, Ruskin RH, Butner J, Chou YJ (1983) Survival of pathogenic and indicator organisms in groundwater. Ground Water 21:405–410

    Article  Google Scholar 

  • Celico F, Varcamonti M, Guida M, Naclerio G (2004) Influence of precipitation and soil on transport of fecal enterococci in limestone aquifers. Appl Environ Microbiol 60:2843–2846

    Article  Google Scholar 

  • Celle-Jeanton H, Travi Y, Blavoux B (2001) Isotopic typology of the precipitation in the Western Mediterranean region at three different time scale. Geophys Res Lett 7:1215–1218

    Article  Google Scholar 

  • Chester FM, Logan JM (1986) Composite planar fabric of gouge from the Punchbowl fault, California. J Struct Geol 9:621–634

    Article  Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, 328 pp

    Google Scholar 

  • Clesceri LS, Greenberg AE, Easton AD (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  • Conti A, Sacchi E, Chiarle M, Martinelli G, Zuppi GM (2000) Geochemistry of the formation waters in the Po plain (northern Italy): an overview. Appl Geochem 15:51–65

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1833–1834

    Article  Google Scholar 

  • Crostella A, Vezzani L (1964) La geologia dell’Appennino foggiano [Geology of the Apennine, Foggia area]. Boll Soc Geol It 83:121–141

    Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    Article  Google Scholar 

  • Dazzaro L, Iannone A, Moresi M, Rapisardi L, Romeo M (1988) Stratigrafia, sedimentologia e geochimica delle successioni Messiniane dell’Irpinia al confine con la Puglia [Stratigraphy, sedimentology and geochemistry of Messinian successions in the Irpinia–Apulia area]. Mem Soc Geol It 41:841–859

    Google Scholar 

  • Deàk J (1978) Environmental isotopes and water chemical studies for groundwater research in Hungary. Proc Symp on Isotope Hydrology, Neuherberg, 19–23/06/1978, IAEA SM 228/13, IAEA, Vienna, pp 221–249

  • Deàk J, Stute M, Rudolph J, Sonntag C (1987) Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C and noble gas measurements. Proc Symp on Isotope techniques in water resources development, 30/03–3/04/1987, IAEA SM 229/39, IAEA, Vienna, pp 335–350

  • De Castro Coppa MG, Moncharmont Zei M, Pescatore T, Sgrosso I, Torre M (1969) Depositi miocenici e pliocenici ad est del Partenio e del Taburno (Campania) [Miocene and Pliocene deposits eastward of Partenio and Taburno mountains (Campania region)]. Atti Acc Gioenia Sc Nat Catania 1:479–512

    Google Scholar 

  • Demirjian DC, Moris-Varas S, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:115–144

    Article  Google Scholar 

  • Di Nocera S, Torre M (1987) Geologia dell’area compresa tra Delicato e Scampitella (App. foggiano) [Geology of Delicato–Scampitella area, Foggia]. Boll Soc Geol It 106:351–364

    Google Scholar 

  • Di Nocera S, Imperato M, Matano F, Stanzione D, Valentino GM (1999) Caratteri geologici ed idrogeologici della valle di Ansanto [Irpinia Centrale, Appennino Campano-Lucano) (Geology and hydrogeology of Ansanto valley, central Irpinia]. Boll Soc Geol It 118:395–406

    Google Scholar 

  • Di Nocera S, Ortolani F, Torre M, Russo B (1981) Evoluzione sedimentaria e cenni di paleogeografia del Tortoniano-Messiniano dell’Irpinia occidentale [Sedimentary evolution and palaeogeography during Tortonian–Messinian in western Irpinia]. Boll Soc Nat Napoli 90:131–166

    Google Scholar 

  • Goddard JV, Evans JP (1995) Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. J Struct Geol 17:533–547

    Article  Google Scholar 

  • Hanes NB, Fragala R (1967) Effect of seawater concentration on the survival of indicator bacteria. J Water Poll Control Fed 39:97–104

    Google Scholar 

  • Harvey RW, Garabedian SP (1991) Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ Sci Technol 25:178–185

    Article  Google Scholar 

  • Hsü KJ, Montadert L, Bernouilli D, Cita MB, Erickson A, Garrison RE, Kidd RB, Melieres F, Müller C, Wright R (1978) History of the Mediterranean salinity crisis. Initial Reports of the Deep Sea Drilling Project, XLII, part 1. US Government Printing Office, Washington, DC, pp 1053–1078

  • Iaria C, Stassi G, Costa GB, Di Leo R, Toscano A, Cascio A (2005) Enterococcal meningitis caused by Enterococcus casseliflavus: first case report. BMC Infect Dis 5(1):3. DOI 10.1186/1471–2334–5–3

    Article  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphilic: enzymatic properties, genetics and structures. Extremophiles 2:185–190

    Article  Google Scholar 

  • Kani J, Mills D (2000) Recommended methods for the analysis of recreational marine water to comply with AB 411. California Department of Health Services, Environmental Laboratory Accreditation Program and Microbiological Disease Laboratory, Sacramento, CA. http://www.dhs.ca.gov/ps/ddwem/beaches/ab411_methods.htm

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  Google Scholar 

  • Keswick BH, Gerba CP, Secor SL, Cech I (1982) Survival of enteric viruses and indicator bacteria in groundwater. J Environ Sci Heal A 17(6):903–912

    Article  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  Google Scholar 

  • McFeters GA, Stuart DJ (1974) Comparative survival of indicator bacteria and enteric pathogens in well water. Appl Microbiol 27:823–829

    Google Scholar 

  • Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  Google Scholar 

  • Ortolani F, de Gennaro M, Ferreri M, Ghiara MR, Stanzione D, Zenone F (1981) Prospettive geotermiche dell’Irpinia centrale (Appennino Meridionale): studio geologico-strutturale e geochimica [Geothermic perspectives in central Irpinia (southern Apeninnes): a geological and geochemical study]. Boll Soc Geol It 100:139–159

    Google Scholar 

  • Pekdeger A, Matthess G (1983) Factors of bacteria and virus transport in groundwater. Environ Geol 5(2)49–52

    Google Scholar 

  • Pingue L, Marrone G (1972) Su alcune acque mineralizzate della provincia di Avellino [Saline waters in the Avellino area]. Econ Irpina 1(6):5–16

    Google Scholar 

  • Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of an extracellular protease from an extreme halophile. Enzyme Microbiol Technol 62:597–635

    Google Scholar 

  • Robert H, Le Marrec C, Blanco C, Jebbar M (2000) Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila. Appl Environ Microbiol 66:509–517

    Article  Google Scholar 

  • Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A (2003) Planococcus rifitensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy). Syst Appl Microbiol 26:357–366

    Article  Google Scholar 

  • Romano I, Gambacorta A, Lama L, Nicolaus B, Giordano A (2005) Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Syst Appl Microbiol 28:34–42

    Article  Google Scholar 

  • Rouchy JM (1981) La genèse des évaporites messiniennes de Méditerranée [The genesis of Messinian evaporites in the Mediterranean area]. MSc Thesis, Univ. de Paris, France

  • Samper J, Custodio E, Garcia Vera MA (1993) Preliminary isotopic study of groundwater salinity variations in the closed basin semiarid area of Los Monegros, Spain. Proc. Symp. on Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, 19–23/04/1993, IAEA SM 329/32, IAEA, Vienna, pp 213–228

  • Satomi M, Kimura B, Mizoi M, Sato T, Fujii T (1997) Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836

    Article  Google Scholar 

  • Sauer T, Galinski EA (1998) Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol Bioeng 57:306–313

    Article  Google Scholar 

  • Sgrosso I (1971) Note illustrative della Carta Geologica d’Italia alla scala 1:100.000, Fogli 185 (Salerno) e 197 (Amalfi) [Geological maps of Italy, scale 1:100.000, numbers 185 (Salerno) and 197 (Amalfi)]. Servizio Geologico d’Italia, Rome, 38 pp

  • Talibart R, Jebbar M, Gouesbet G, Himdi-Kabbab S, Wroblewski H, Blanco C, Bernard T (1994) Osmoadaptation in rhizobia: ectoine-induced salt tolerance. J Bacteriol 176:5210–5217

    Google Scholar 

  • Talibart R, Jebbar M, Gouffi K, Pichereau V, Gouesbet G, Blanco C, Bernard T, Pocard JA (1997) Transient accumulation of glycine betaine and dynamics of endogenous osmolytes in salt-stressed cultures of Sinorhizobium meliloti. Appl Environ Microbiol 63:4657–4663

    Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans Am Geophys Union 2:519–524

    Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality, 1st Addendum to 3rd edn. World Health Organization, Geneva

Download references

Acknowledgements

We would like to thank three anonymous reviewers for detailed and helpful reviews, E. Petrella for her thoughtful comments and C.G. Pacifico and S. Aquino for supporting the research. This project was funded by the Provincia di Avellino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Celico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celico, F., Capuano, P., De Felice, V. et al. Hypersaline groundwater genesis assessment through a multidisciplinary approach: the case of Pozzo del Sale Spring (southern Italy). Hydrogeol J 16, 1441–1451 (2008). https://doi.org/10.1007/s10040-008-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0305-2

Keywords

Navigation