Skip to main content

Advertisement

Log in

Contributions of boron isotopes to understanding the hydrogeochemistry of the coastal detritic aquifer of Castellón Plain, Spain

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Castellón Plain alluvial aquifer, Spain, is intensively exploited to meet the demand for agricultural irrigation and industrial water supply. The geochemistry of its groundwater shows complex salinization in the northern and southern parts of the aquifer, with significant pollution from human origin in the central portion. Boron content and B isotope geochemistry are useful for distinguishing between various sources of pollution and their relative importance in different parts of this aquifer. Boron concentrations in the groundwater vary between 0.01 and 0.85 mg/L. In the more saline groundwaters, found at the northern and southern ends of the study area, the presence of B is linked to inputs from seawater and water with a calcium-magnesium sulphate facies, which feed the aquifer and clearly influence the chemistry of its waters. Evidence of B adsorption processes in some samples is shown by the low B/Cl ratios and the high values of δ11B. In the central portion of the aquifer, the high B/Cl ratios and the strongly negative δ11B are related to pollution of human origin.

Résumé

L’aquifère alluvial de la plaine de Castellon en Espagne, est exploité intensivement afin de répondre aux besoins en eau de l’irrigation agricole et de l’industrie. La géochimie des eaux souterraines montre une salinization complexe au niveau des parties nord et sud de l’aquifère, ainsi qu’une pollution d’origine humaine importante dans la partie centrale de l’aquifère. La teneur en bore et la géochimie isotopique du bore sont utiles pour distinguer les différentes sources de pollution et leur importance relative dans les différentes zones de cet aquifère. Les concentrations en bore de l’eau souterraine varient entre 0.01 et 0.85 mg/L. Dans les eaux souterraines les plus salées, situées dans les parties nord et sud de la zone d’étude, la présence du bore est liée à des entrées d’eau de mer et d’eau ayant un faciès chimique de type sulphaté-calco-magnésique qui alimentent l’aquifère et influencent clairement la chimie de l’eau. Le processus d’adsorption du bore est mis en évidence dans certains échantillons par des rapports B/Cl faibles et des valeurs de δ11B élevées. Dans la partie centrale de l’aquifère, les rapports B/Cl élevés et une valeur de δ11B très négative indiquent une pollution d’origine humaine.

Resumen

El acuífero aluvial de la Plana de Castellón (España) es explotado de forma intensiva para satisfacer la demanda de riego agrícola y el abastecimiento industrial. La geoquímica de sus aguas subterráneas muestra un tipo de salinización complejo en los sectores norte y sur del acuífero, y una contaminación de origen antrópico especialmente importante en el área central. El contenido de boro y el comportamiento geoquímico de los isótopos de boro han ayudado a distinguir entre varias fuentes de contaminación y establecer su importancia relativa en las diferentes partes del acuífero. Las concentraciones de boro en las aguas subterráneas varían entre 0.01 y 0.85 mg/L. En las aguas más salinas la presencia de boro se relaciona con aportes desde el agua de mar y aguas de facies sulfatada cálcica, que alimentan el acuífero e influyen notablemente sobre el quimismo de sus aguas. En algunas de estas aguas parece identificarse procesos de adsorción de boro que provocan un descenso en el valor de la relación B/Cl y un aumento de los valores de δ11B. En el área central los altos valores de la relación B/Cl y los valores fuertemente negativos de δ11B se relacionan con una contaminación de origen antrópico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aiuppa A, Avino R, Brusca L, Chiodini G, D’Alessandro W, Favara R, Federico C, Ginebra W, Inguaggiato S, Longo N, Pecoraino G, Valenza M (2006) Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: insight from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem Geol 229:313–330

    Article  Google Scholar 

  • APHA, AWWA, WPCF (American Public Health Association; American Water Works Association); Water Pollution Control Federation) (1989) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

  • Appelo CAJ, Postma D (2006) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Arad A, Bein A (1986) Saline-versus freshwater contribution to the thermal waters of the northern Jordan Rift Valley, Israel. J Hydrol 83:49–66

    Article  Google Scholar 

  • Arad A (1988) B, F and Sr as tracers in carbonate aquifers and in karstic geothermal systems in Israel. 21st IAH Congress, Karst Hydrogeology and Karst Environment Protection, Guilin, China, October 1988

  • Barth S (1993) Boron isotope variations in nature: a synthesis. Int J Earth Sci 82(4):640–651

    Google Scholar 

  • Barth S (1997) Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry. Chem Geol 143:255–261

    Article  Google Scholar 

  • Barth S (1998) Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Res 32(3):685–690

    Article  Google Scholar 

  • Barth S (2000) Boron isotopic composition of near-surface fluids: a tracer for identification of natural and anthropogenic contaminant sources. Water Air Soil Pollut 124:49–60

    Article  Google Scholar 

  • Bassett RL, Buszka PM, Davidson GR, Chongdiaz D (1995) Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol 29(12):2915–2922

    Article  Google Scholar 

  • Bencini A (1985) Applicabilità del metodo dell’Azometina-H alla determinazione del boro nelle acque naturali [Application of Azomethine-H method to the determination of boron in natural waters]. Rend Soc It Min Petr 40:311–316

    Google Scholar 

  • Davidson GR, Basset RL (1993) Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater. Environ Sci Technol 29(12):2915–2922

    Google Scholar 

  • Dotsika E, Poutoukis D, Michelot JL, Kloppmann W (2006) Stable isotope and chloride, boron study for tracing sources of boron contamination in groundwater: boron contents in fresh and thermal water in different areas in Greece. Water Air Soil Pollut 174:19–32

    Article  Google Scholar 

  • Eisenhut S, Heumann KG (1997) Identification of ground water contamination by landfills using precise boron isotope ratio measurements with negative thermal ionization mass spectrometry. Fres J Anal Chem 359:375–377

    Article  Google Scholar 

  • Eisenhut S, Heumann KG, Vengosh A (1996) Determination of boron isotopic variations in aquatic systems with negative thermal ionization mass spectrometry as a tracer of anthropogenic influences. Fres J Anal Chem 354:903–909

    Google Scholar 

  • Faye S, Maloszewski P, Stichler W, Trimborn P, Faye SC, Gaye CB (2005) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ 343(2005):243–259

    Google Scholar 

  • Fidelibus MD, Giménez E, Morell I, Tulipano L (1993) Salinization processes in the Castellón plain aquifer. In: E Custodio, A Galofré (eds) Study and modelling of salt water intrusion into aquifers. Proc. 12th Saltwater Intrusion Meeting, Barcelona, November 1992, pp 267–283

  • Giménez E (1994) Caracterización hidrogeoquímica de los procesos salinización en el acuífero detrítico costero de la Plana de Castellón [Hydrogeochemical characterization of the salinization processes in coastal aquifer of Castellón Plain]. PhD Thesis, University of Granada, Spain

  • Giménez Forcada E (2005) Consideraciones sobre la utilidad del boro como trazador hidrogeoquímico en procesos de salinización [Considerations on the use of boron as a hydrogeochemical tracer in salinization processes]. Abula (Universidad Católica de Ávila) 7:7–20

  • Giménez E, Morell I (1991) Consideraciones sobre la utilización de iones minoritarios en la caracterización de la intrusión marina [Reflections about utilization of minor ions in the characterization of marine intrusion]. Proceeding from the 3rd Symposium El Agua en Andalucía, vol 1, Córdoba, Spain, September 1991, pp 401–412

  • Giménez E, Morell I (1992) El boro como indicador de contaminación en la Plana de Castellón [Boron as tracer of contamination in Castellón Plain aquifer]. Hidrogeol Recurs Hidrául XVI:285–292

  • Giménez Forcada E, Bencini A, Pranzini G (2001) Salinization in coastal plain of Grosseto: hydrochemical study. In: Water-rock interaction (WRI-2001), Balkema, Rotterdam, The Netherlands, pp 517–520

    Google Scholar 

  • Goldberg S (1993) Chemistry and mineralogy of boron in soils. In: Gupta UC (ed) Boron and its role in crop production. CRC, Boca Raton, FL, pp 3–4

    Google Scholar 

  • Goldberg S, Forster HS, Heick EL (1993) Boron adsorption mechanisms on metal oxides, clay-minerals, and soils inferred from ionic-strength effects. Soil Sci Soc Am 57:704–708

    Article  Google Scholar 

  • Harder H (1970) Boron. In: Wedepol KH (eds) Handbook of geochemistry, chap. 5. Springer, Berlin

  • Hoehn E (1999) Preliminary analysis of boron isotope ratios in leachate-contaminated groundwater. In: Integrated methods in catchment hydrology: tracer, remote sensing and new hydrometric techniques. IAHS Publ no. 258, IAHS, Wallingford, UK, pp 193–197

  • Hogan JF, Blum JD (2003) Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Appl Geochem 18:615–627

    Article  Google Scholar 

  • Howard KWF, Lloyd JW (1983) Major ions characterization of coastal saline ground waters. Ground Water 21(4):429–437

    Article  Google Scholar 

  • IGME (1984) Actualización de los recursos hidráulicos subterráneos existentes en la comarca de Sagunto [Update of the grounwater hydraulic resources existing in Sagunto’s region]. Comunidad Valenciana, I–II, IGME (Instituto Geológico y Minero de España, Spanish Geological Survey), Madrid

  • IGME (1986) Las aguas en la Comunidad Valenciana. Uso calidad y perspectivas de utilización [The waters in the Valencian Community. Use, quality and perspectives of utilization]. IGME, Madrid

  • Ikeda K (1989) Chemical evolution of groundwater quality in the southern foot of Mount Fuji. Bull Geol Surv Japan 40(7):331–404

    Google Scholar 

  • ITGE (1989–1990) Planas de Castellón y Sagunto [Castellón and Sagunto Plains]. Serie Manuales de Utilización de acuíferos. Dirección de Aguas Subterráneas. ITGE (Instituto Tecnológico y Geominero de España, Spanish Geological Survey), Madrid

  • Kakihana H, Kotaka M (1977) Equilibrium constants for boron isotope-exchange reactions. Bull Res Laborat Nucl React 2:1–12

    Google Scholar 

  • Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Japan 50:158–163

    Article  Google Scholar 

  • Kakihana H, Ossaka T, Oi T, Musashi M, Okamoto M, Nomura M (1987) Boron isotopic ratios of some hot spring waters in the Kusatsu-Shirane area, Japan. Geochem J 21:133–137

    Google Scholar 

  • Keren R, Mezuman U (1981) Boron adsorption by clay minerals using a phenomenological equation. Clays Clay Miner 29(3):198–204

    Article  Google Scholar 

  • Leeman WP, Tonarini S, Pennisi M, Ferrara G (2005) Boron isotopic variations in fumarolic condensates and thermal waters from Vulcano Island, Italy: implications for evolution of volcanic fluids. Geochim Cosmochim Acta 69(1):143–163

    Article  Google Scholar 

  • Leenhouts JM, Bassett RL, Maddock T (1998) Utilization of intrinsic boron Isotopes as co-migrating tracers for identifying potential nitrate contamination. Ground Water 36(2):240–250

    Article  Google Scholar 

  • Lloyd JW, Tellam JH (1988) Caracterización hidroquímica de las aguas subterráneas en áreas costeras [Hydrochemical characterization of groundwater in coastal areas]. Proceedings of International Symposium TIAC’88 (Tecnología de la Intrusión marina en Acuíferos Costeros), vol 1, Almuñecar, Granada, Spain, June 1988, pp 1–18

  • López FJ, Giménez E, Hernández F (1993) Analytical study on the determination of boron in environmental water samples. Fres J Anal Chem 346:984–987

    Article  Google Scholar 

  • Macpherson GL, Land LS (1989) Boron in saline brines, Gulf of Mexico sedimentary basin, USA. In: Water-rock interaction (WRI-86), Balkema, Rotterdam, pp 457–460

  • Mirecki JE, Parks WS (1994) Leachate geochemistry at a municipal landfill, Memphis, Tennessee. Ground Water 32(3):390–398

    Article  Google Scholar 

  • Morell I (1999) Presencia de metales en el sector meridional del acuífero de la Plana de Castellón [Metal presence in the southern sector of Castellón Plain aquifer]. Technical report, Jaume I University, Spain

  • Morell I, Hernández F (2001) El agua en Castellón. Un reto para el siglo XXI [The water in Castellón: a challenge for the 21st century]. Jaume I University, Spain

  • Morell I, Tuñón J (2002) Contribución de las actividades agrícolas a la presencia de sulfatos en los acuíferos costeros: el caso de la Plana de Castellón. En: Los acuíferos costeros y las desaladoras. [Contribution of the agricultural activities to the presence of sulfates in the coastal aquifers: the case of Castellón Plain. In: The coastal aquifers and desalination plants]. Pulido-Bosch, Vallejos & Pulido-Leboeuf, Almería, Spain

  • Morell I, Giménez E, Esteller MV (1996) Application of the principal components analysis to the study of salinization of the Castellón Plain (Spain). Sci Total Environ 177:161–171

    Article  Google Scholar 

  • Morell I, Pulido-Bosch A, Virgilio J, Daniele L (2005) Geoquímica isotópica del boro en áreas termales asociadas a vulcanismo activo. Casos de las islas de Ischia (Italia) y San Miguel (Portugal) [Isotopic geochemistry of boron in thermal areas associated with the active vulcanism. Cases of Ischia Island (Italy) and San Miguel Island (Azores, Portugal]. In: Agua, minería y medio ambiente. IGME, Madrid, pp 319–341

  • Musashi M, Nomura M, Okamoto M, Ossaka T, Oi T, Kakihana H (1988) Regional variation in the boron isotopic composition of hot spring waters from central Japan. Geochem J 22:205–214

    Google Scholar 

  • Négrel P, Petelet-Giraud E, Kloppmann W, Casanova J (2002) Boron isotope signatures in the coastal groundwaters of French Guiana. Water Resour Res 38(11):1262

    Article  Google Scholar 

  • Pennisi M, Bianchini G, Muti A, Kloppmann W, Gonfiantini R (2006a) Behaviour of boron and strontium isotopes in groundwater–aquifer interactions in the Cornia Plain (Tuscany, Italy). Appl Geochem 21:1169–1183

    Article  Google Scholar 

  • Pennisi M, Gonfiantini R, Grassi S, Squarci P (2006b) The utilization of boron and strontium isotopes for the assessment of boron contamination of the Cecina River alluvial aquifer (central-western Tuscany, Italy). Appl Geochem 21:643–655

    Article  Google Scholar 

  • Ravenscroft P, McArthur JM (2004) Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Appl Geochem 19:1413–1430

    Article  Google Scholar 

  • Rose EP, Chaussidon M, France-Lanord C (2000) Fractionation of boron isotopes during erosion processes: the example of Himalayan rivers. Geochim Cosmochim Acta 64:397–408

    Article  Google Scholar 

  • Sánchez-Martos F, Pulido-Bosch A (1999) Boron and the origin of salinization in an aquifer in southeast Spain. CR Acad Sci Paris Earth Planet Sci 328:751–757

    Google Scholar 

  • Schmassmann H, Kullin M (1990) Halide/Chloride and Boron/Chloride ratios in deep groundwaters of Northern Switzerland. Memoirs of the 22nd IAH Congress, Lausanne, 1990, pp 296–303

  • Spivack AJ, Palmer MR, Edmonds JM (1987) The sedimentary cycle of boron isotopes. Geochim Cosmochim Acta 51:1939–1949

    Article  Google Scholar 

  • Tellam JH, Lloyd JW (1986) Problems in the recognition of seawater intrusion by chemical means: an example of apparent chemical equivalence. Q J Eng Geol 19:389–398

    Article  Google Scholar 

  • Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the Phlegrean Volcanic District, Italy. J Volcanol Geotherm Res 133:123–129

    Article  Google Scholar 

  • Travi Y, Faye A (1990) Concentrations en bore de la “nappe maestrichtienne” du Sénegal: leur influence sur l’aptitude des eaux a l’irrigation [Concentrations of boron in the Maestrichtian aquifer of Senegal: its influence in the quality of irrigation waters]. J Afr Earth Sci 11(3/4):253–259

    Article  Google Scholar 

  • Vengosh A (1998) The isotopic composition of anthropogenic boron and its potential impact on the environment. Biol Trace Elem Res 66:145–151

    Article  Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variations during fractional evaporation of sea-water: new constraints on the marine vs. nonmarine debate. Geology 20(9):799–802

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Chivas AR (1994) Boron isotopes in Heletz-Kokhav oilfield brines, the Coastal Plain, Israel. Isr J Earth Sci 43:231–237

    Google Scholar 

  • Vengosh A, De Lange GJ, Starinshy A (1998) Boron isotope and geochemical evidence of Urania and Bannock brines in the eastern Mediterranean: effect of water-rock interactions. Geochim Cosmochim Acta 62:3221–3228

    Article  Google Scholar 

  • Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35(6):1877–1894

    Article  Google Scholar 

  • Vengosh A, Gill J, Davidson ML, Hudson GB (2002) A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Water Resour Res 38:1–17

    Article  Google Scholar 

  • Vengosh A, Kloppmann W, Marei A, Livshitz Y, Gutierrez A, Banna M, Guerrot C, Pankratov I, Raanan H (2005) Sources of salinity and boron in the Gaza strip: natural contamination flow in the southern Mediterranean coastal aquifer. Water Resour Res 41:W01013, DOI 10.1029/2004WR003344

    Article  Google Scholar 

  • Xiao YK, Sun DP, Wang YH, Qi HP, Jin L (1992) Boron isotopic composition of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Geochim Cosmochim Acta 56:1561–1568

    Google Scholar 

Download references

Acknowledgements

This article was financed by the CICYT (Comisión Interministerial de Ciencia y Tecnología, Interministerial Commission of Science and Technology) within the framework of project HID1999–0597-C01–02. The authors are also grateful to Eduard Hoehn and an anonymous reviewer, for their comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Giménez Forcada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giménez Forcada, E., Morell Evangelista, I. Contributions of boron isotopes to understanding the hydrogeochemistry of the coastal detritic aquifer of Castellón Plain, Spain. Hydrogeol J 16, 547–557 (2008). https://doi.org/10.1007/s10040-008-0290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0290-5

Keywords

Navigation