Skip to main content

Advertisement

Log in

Groundwater recharge and discharge processes in the Jakarta groundwater basin, Indonesia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Proper management of groundwater resources requires knowledge of the processes of recharge and discharge associated with a groundwater basin. Such processes have been identified in the Jakarta groundwater basin, Indonesia using a theory that describes the simultaneous transfer of heat and fluid in a porous medium. Temperature-depth profiles in monitoring wells are used to determine the geothermal gradient. To examine the rules of groundwater flow in the distortion of the isotherms in this area, several methods are compared. Subsurface temperature distribution is strongly affected by heat advection due to groundwater flow. Under natural flow conditions, the recharge area is assumed to occur in the hills and uplands, which are located on the periphery of the Jakarta basin, and the discharge area is located in the central and northern part of the Jakarta groundwater basin. A transition area, which could act as local recharge and discharge areas, occupies the middle of the lowland. Subsurface temperatures show good correlation with the groundwater flow conditions, and the data yield important information on the location of recharge and discharge areas.

Résumé

Gérer convenablement les ressources en eaux souterraines requiert une bonne connaissance des processus de réalimentation et d’émergence associés à un bassin hydrogéologique donné. Ces processus ont été identifiés sur le bassin hydrogéologique de Jakarta, en Indonésie, en utilisant une théorie qui décrit le transfert simultané de chaleur et de fluide en milieu poreux. Les gradients de température sont déterminés à partir des diagraphies de température effectuées dans les piézomètres. Afin d’étudier les règles qui régissent localement les écoulements souterrains au travers des distorsions des isothermes du secteur, plusieurs méthodes sont comparées. La distribution des températures en subsurface est fortement affectée par l’advection de chaleur résultant des écoulements souterrains. En conditions naturelles d’écoulement, l’aire d’alimentation est supposée couvrir les collines et les hauteurs bordant le bassin de Jakarta, tandis que l’aire d’émergence se situe sur sa partie centrale et septentrionale. Un secteur de transition, qui peut se comporter tantôt comme une aire d’alimentation locale, tantôt comme une aire d’émergence, occupe le centre de la plaine. Les températures en subsurface sont bien corrélées avec les conditions d’écoulement des eaux souterraines, et ces données fournissent des informations essentielles sur les localisations des zones d’alimentation et d’émergence.

Resumen

La gestión adecuada de los recursos de agua subterránea requiere conocimiento de los procesos de recarga y descarga asociados con una cuenca de aguas subterráneas. Tales procesos se han identificado en la cuenca de aguas subterráneas Yakarta, Indonesia, usando una teoría que describe la transferencia simultánea de calor y fluido en un medio poroso. Se utilizan perfiles de profundidad-temperatura en pozos de monitoreo para determinar el gradiente geotérmico. Se comparan varios métodos para examinar las reglas de flujo de agua subterránea en la distorsión de isotermas en esta área. La distribución de temperaturas subsuperficiales es afectada fuertemente por advección de calor debido al flujo de agua subterránea. Bajo condiciones de flujo natural se asume que el área de recarga ocurre en las colinas y tierras altas, las cuales se localizan en la periferia de la cuenca Yakarta, y el área de descarga se localiza en la parte norte y central de la cuenca de agua subterránea Yakarta. Un área de transición, la cual podría actuar como áreas de descarga y recarga locales, ocupa la parte media de las tierras bajas. Las temperaturas subsuperficiales muestran buena correlación con las condiciones de flujo de agua subterránea, y los datos producen información importante sobre la localización de áreas de recarga y de descarga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achdan A, Sudana D (1992) Geology of Karawang, Jawa. Geological Research and Development Centre, Bandung, Indonesia

    Google Scholar 

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the Earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Cartwright K (1970) Groundwater discharge in the Illinois basin as suggested by temperature anomalies. Water Resour Res 6(3):912–918

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Dim JR, Sakura Y, Fukami H, Miyakoshi A (2002) Spatial characteristic of groundwater temperature in the Ishikari Lowland, Hokkaido, northern Japan: analytical and numerical applications. Hydrogeol J 10:296–306

    Article  Google Scholar 

  • Effendi A, Kusnama C, Hermanto B (1998) Geology of Bogor, Jawa. Geological Research and Development Centre, Bandung, Indonesia

    Google Scholar 

  • Fachri M, Djuhaeni, Hutasoit LM, Ramdhan AM (2003) Stratigraphy and hydrostratigraphy in Jakarta groundwater basin (in Indonesian). Bull Geol Bandung Instit Technol 34(3):169–189

    Google Scholar 

  • Lu N, Ge S (1996) Effects of horizontal heat and fluid flow on the vertical temperature distribution of a semiconducting layer. Water Resour Res AGU 32:1449–1453

    Article  Google Scholar 

  • Mansure AJ, Reiter M (1979) A vertical groundwater movement correction for heat flow. J Geophys Res 84(B7):3490–3496

    Article  Google Scholar 

  • Reiter M (2005) Potential ambiguities in subsurface temperature logs: consideration of ground water flow and ground surface temperature change. Pure Appl Geophys 162:343–355

    Article  Google Scholar 

  • Rutherford (1981) Geothermal gradient map of Indonesia. Scale 1: 2.500.000, Indonesia Petroleum Association, Jakarta

  • Sakura Y (1978) Study on groundwater cycle by water temperature. In: Ichikawa M, Kayane I (eds) Water balance in Japan, vol 10. Kokon Shoin, Tokyo, pp 34–65

  • Schmidt G, Hobler M, Soefner B (1986) Jakarta groundwater study working paper 117, Directorate of Environmental Geology, Bandung, Indonesia, pp 35–36

  • Stallman RW (1963) Computation of ground-water velocity from temperature data. US Geol Surv Water Supply Pap 1544-H, pp 36–46

  • Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah-Siakwan S, Kawashima S (1999) Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. an effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan. Water Resour Res 35(5):1507–1517

    Article  Google Scholar 

  • Thamrin M (1985) An investigation of the relationship between the geology of Indonesian sedimentary basins and heat flow density. Tectonophys J 121:45–62

    Article  Google Scholar 

  • Turkandi T, Sidarto Agustyanto DA, Hadiwidjoyo M (1992) Geology of the Jakarta and the Thousand Island Quadrangle, Jawa, Geological Research and Development Centre, Bandung, Indonesia

Download references

Acknowledgements

We are grateful to Prof. Maria-Theresia Schafmeister (Managing Editor), the Associate Editor, Susanne Schemann and Christine Watson (Hydrogeology Journal Editorial Office), Sue Duncan (Hydrogeology Journal Technical Editorial Advisor), and the reviewers for their thorough and helpful reviews of the manuscript. We are indebted to Abdurahman Assegaf, MEng from Trisakti University Indonesia and Lambok Maringan Hutasoit, PhD from Bandung Institute of Technology (ITB) Indonesia for their cooperation and useful suggestions. Also, sincere thanks go to Dr. Akinobu Miyakoshi, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST) Japan and Prof. Makoto Taniguchi, Research Institute for Humanity and Nature (RIHN), Kyoto-Japan for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachmat Fajar Lubis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubis, R.F., Sakura, Y. & Delinom, R. Groundwater recharge and discharge processes in the Jakarta groundwater basin, Indonesia. Hydrogeol J 16, 927–938 (2008). https://doi.org/10.1007/s10040-008-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0278-1

Keywords

Navigation