Skip to main content

Advertisement

Log in

Spatio-temporal variation of stable isotopes of river waters, water source identification and water security in the Heishui Valley (China) during the dry-season

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Spatial variations of δD and δ18O among seven tributaries and their water sources were investigated in the Heishui Valley of the Yangtze River, China during the dry-season in 2004. A one-way ANOVA (analysis of variation) test showed that both δD (p < 0.01) and δ18O (p = 0.045) spatially varied among the seven tributaries. The plot of δ18O versus δD for the river water collected at different locations showed that isotopic fractionation occurred during the snow and glacial melting process. The depleted δ18O and δD in the tributary waters distributed above the local meteoric water line (LMWL) suggested that the glacial and early snowpack meltwater largely recharged these streams during the early spring. The meltwater was isotopically distinguishable from the precipitation and river water, which had been evaporated during warmer and drier times. If glaciers and snow accumulation diminish with future climate warming, the recharge of these tributaries’ baseflow will decline and the security of the water resource in this watershed will be threatened.

Résumé

Les variations spatiales de δD et δ18O le long de sept affluents et de leurs sources ont été étudiées dans la Vallée de Heishui de la Rivière Yangtze, en Chine, durant la saison sèche de 2004. Un test ANOVA (analyse de la variance) à un facteur a montré que δD (p < 0.01) et δ18O (p = 0.045) sont tous les deux spatialement variables le long des sept affluents. Le graphique δ18O versus δD de l’eau de la rivière récoltée en différents endroits montre que le fractionnement isotopique apparaît durant la fonte de la neige et des glaces. Les δ18O et δD appauvris dans les affluents distribués au dessus de la ligne météoritique locale (LMWL en anglais), suggèrent que les eaux de la fonte des neiges précoces et des glaciers ont largement rechargé les cours d’eau au début du printemps. L’eau de la fonte a été isotopiquement distinguée des précipitations et de l’eau de la rivière, qui été évaporée durant les périodes plus chaudes et plus sèches. Si les glaciers et l’accumulation de la neige diminuent avec les futurs changements climatiques, la recharge de l’écoulement de base de ces affluents diminuera et la sécurité de la ressource en eau de ce bassin versant sera menacée.

Resumen

Las variaciones espaciales de δD y δ18O entre siete tributarios y sus fuentes de agua fueron investigadas en el Heishui Valley del Yangtze River, China durante la estación seca de 2004. Una prueba ANOVA de una vía (análisis de variación) mostró que ambos δD (p < 0.01) y δ18O (p = 0.045) variaron espacialmente entre los siete tributarios. La gráfica de δD versus δ18O para el agua del río muestreada en diferentes localidades mostró que el fraccionamiento isotópico ocurrió durante el proceso de derretimiento de nieve y glaciar. La reducción de δ18O y δD en el agua de los tributarios distribuida sobre la línea de agua meteórica local (LMWL) sugirió que el glaciar y deshielo temprano de la nieve compactada recargó fuertemente estos arroyos durante el comienzo de la primavera. El agua resultado del deshielo fue isotopicamente distinguible del agua precipitada y del agua del río, la cual ha sido evaporada durante épocas más calientes y secas. Si la acumulación de glaciares y nieve disminuye con un futuro calentamiento climático, la recarga de los flujos base de estos tributarios disminuirá y la seguridad de recursos del agua en esta cuenca estará amenazada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnell NW (1999) Climate change and global water resources. Glob Environ Change 9:31–49

    Article  Google Scholar 

  • Buttle JM (1994) Isotope hydrograph separations and rapid delivery of pre-event water from drainage basin. Process Phys Geogr 18:16–41

    Article  Google Scholar 

  • Buttle JM (1998) Fundamentals of small catchment hydrology. In: Kendall C, Mcdonnnell JJ (ed) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 42–43

  • Boronina A, Balderer W, Renard P, Stichler, W (2005) Study of stable isotopes in the Kouris catchment (Cyprus) for the description of regional groundwater flow. J Hydrol 308:214–226

    Article  Google Scholar 

  • Chen CY (1995) Exploitation of water resources in southwest of China (in Chinese). Impact Sci Soc 1:44–52

    Google Scholar 

  • Chen Z (2000) The strategic position and the ecological and environmental function of the upper reaches of the Yangtze River (in Chinese). J Mount Sci 18:258–262

    Google Scholar 

  • Chen NS, Chen QB (2003) Frequency of different scale debris flows in limited triggering earth -Taking Luojiaba Valley debris flow for example (in Chinese). J Chengdu Univer Technol 30:612–616

    Google Scholar 

  • Chen GM, Qi HY, Pan W (2000) Math statistics of Matlab 6.x (in Chinese). Science Press, Beijing

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL

    Google Scholar 

  • Cooper LW, Olsen CR, Solomon DK, Larsen IL, Cook RB, Grebmeier JM (1991) Stable isotopes of oxygen and natural fallout radionuclides used for tracing runoff during snowmelt in an Arctic watershed. Water Resour Res 27:2171–2179

    Article  Google Scholar 

  • Cooper LW, Solis C, Kane DL, Hinzman LD (1993) Application of oxygen-18 tracer techniques to Arctic hydrological process. Arct Alp Res 25:247–255

    Google Scholar 

  • Craig H (1961) Isotope variation in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–438

    Article  Google Scholar 

  • Friedman I, Smith GI, Gleason JD, Warden A, Harris JM (1992) Stable Isotope composition of waters in southeastern California: part I, modern precipitation. J Geophys Res 97:5795–5812

    Google Scholar 

  • Fontes JC, Boulange B, Carmouze JP, Florkowski T (1979a) Preliminary oxygen-18 and deuterium study of the dynamics of Lake Titicaca. In: Mortimer C (ed) Application of nuclear techniques to the study of lake dynamics. IAEA, Vienna, pp 145–150

    Google Scholar 

  • Fontes JC, Florkowski T, Pouchan P, Zuppi GM (1979b) Preliminary isotopic study of Lake Asal system. In: Mortimer C (ed) Application of nuclear techniques to the study of lake dynamics. IAEA, Vienna, pp 163–174

    Google Scholar 

  • Geyh MA, Gu WZ (1991) Preliminary isotope hydrological study in the arid Guriani Grassland area, Inner Mongolia. In: Isotope techniques in water resources development. IAEA, Vienna, pp 661–662

  • Gibson JJ, Edwards TWD, Prows TD (1993) Runoff generation in a high boreal wetland in northern Canada. Nord Hydrol 24:213–224

    Google Scholar 

  • Hager R, Johnstone RA (2003) The genetic basis of family conflict resolution in mice. Nature 421:533–535

    Article  Google Scholar 

  • Ingramham NL (1998) Isotopic variations in precipitation In: Kendall C and Mcdonnnell JJ (ed) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 87–88

  • Ingraham NL, Taylor BE (1991) Light stable isotopic systematics of large-scale hydrologic regimes in California and Nevada. Water Resour Res 27:77–90

    Article  Google Scholar 

  • IPCC (1996) Climate change 1995: the science of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jiang H (1994) DCA ordination, quantitative classification and environmental interpretation of spruce and fir communities in northwest Sichuan and Gansu (in Chinese). Acta Phytoecol Sin 18:297–305

    Google Scholar 

  • Jiang H, Liu SR, Sun PS, g An SQ, Zhou GY, Li CY, Wang JX, Yu H, Tian XJ (2004) The influence of vegetation type on the hydrological process at the landscape scale. Can J Remote Sens 30:743–763

    Google Scholar 

  • Jacobson G, Jankowski J, Abell RS (1991) Groundwater and surface water interaction of Lake George, New South Wales. J Aust Geol Geophys 12:161–189

    Google Scholar 

  • Jouzel J (1986) Isotopes in cloud: multiphase and multistage condensation process. In: Fritz P, Fontes JC (ed) Handbook of environmental isotope geochemistry. Elsevier, New York, pp 61–112

    Google Scholar 

  • Kang SC (2005) Glaciers of Tibetan Plateau and global climate change (in Chinese). China Nature 3:10–11

    Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry In: Kendall C and Mcdonnnell JJ (ed) Isotope tracers in catchment hydrology. Elsevier, Amsterdsam, pp 62-80

  • Learning T (2000) Sun SG (Translator) (2004) Fundamentals of biostatistics (in Chinese). Science Press, Beijing

  • Leopoldo, PR, Martinez JC, Mortatti J (1987) Runoff hydrograph analysis in agricultural watersheds by oxygen-18. In: Isotope techniques in water resources development. IAEA, Vienna, pp 539–550

    Google Scholar 

  • Li AN, Zhou WC, Jiang XB (2003) Dynamic change of land use/land cover over 15 years in upper reaches of Minjiang River supported by RS and GIS (in Chinese). J Soil Water Conserv 17:153–156

    Google Scholar 

  • Liu JG, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186

    Article  Google Scholar 

  • Liu SR, Sun PS, Wang JX, Chen LW (2001) Hydrological functions of forest vegetation in upper reaches of the Yangtze River (in Chinese). J Nat Resour 16:451–456

    Google Scholar 

  • Liu YH, An SQ, Deng ZF, Fan NJ, Yang HB, Wang ZS, Zhi YB, Zhou CF, Liu SR (2006) Effects of vegetation patterns on yields of the surface and subsurface waters in the Heishui Alpine Valley in west China. Hydrol Earth Syst Sci Discuss 3:1021–1043

    Google Scholar 

  • Mark, BG, Seltzer, GO, Rodbell, DT, Goodman, AY (2002) Rates of deglaciation during the last glaciation and Holocene in the Cordillera Vilcanota-Quelccaya ice cap region, southeastern Peru. Quat Res 57:287–298

    Article  Google Scholar 

  • Martinelli LA, Victoria RL, Sternberg LSL, Rbeiro A, Moreira MZ (1996) Using stable isotopes to determine sources of evaporated water to the atmosphere in the Amazon basin. J Hydrol 183:191–204

    Article  Google Scholar 

  • Merlivat L (1978) Molecular diffusivities of water H2 16O, HD16O and H2 18O in gases. J Chem Phys 69:2864–2871

    Article  Google Scholar 

  • McDonnell JJ, Stewart MK, Owens IF (1991) Effect of catchment-scale subsurface mixing on stream isotopic response. Water Resour Res 27:3065–3073

    Article  Google Scholar 

  • McKenna SA, Ingrahm NL, Jacobson RL, Cochram GF (1992) A Stable isotopic study of bank storage mechanisms in the Truckee River basin. J Hydrol 134:203–219

    Article  Google Scholar 

  • McKenzie JM, Siegel DI, Patterson W, McKenzie DJ (2001) A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection. Hydrogeol J 9:265–272

    Article  Google Scholar 

  • Michel FA (1986) Isotope geochemistry of frost-blister ice, North Fork Pass, Yukon, Canada. Can J Earth Sci 23:543–549

    Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res 84:5029–5033

    Google Scholar 

  • Neal M, Neal C, Brahmer G (1997) Stable oxygen isotope variations in rain, snow and streamwaters at the Schluchsee and Villingen sites in the Black Forest, SW Germany. J Hydrol 190:102–110

    Article  Google Scholar 

  • Obradovic MM, Sklash MG (1986) An isotopic and geochemical study of the snowmelt runoff in a small arctic watershed. Hydrol Proc 1:15–30

    Article  Google Scholar 

  • Pu FD (2000) The present conditions of ecology and biodiversity protection upstream of Minjiang (in Chinese). Resour Sci 22:83–85

    Google Scholar 

  • Rodhe A (1998) Snowmelt-Dominated Systems In: Kendall C and Mcdonnnell JJ (ed) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 393–418

  • Shi YF, Li JJ (1994) New process on the glaciological and Quaternary glacier research in China since the 1980s (in Chinese). J Glaciol Geocryol 16(1):1–12

    Google Scholar 

  • Simpson HJ, Herczeg AL (1991) Stable Isotopes as an indicator of evapotation in the River Murray, Australia. Water Resour Res 27:1925–1935

    Article  Google Scholar 

  • Stichler W, Schotterer U (2000) From accumulation to discharge: modification of stable isotopes during glacial and post-glacial process. Hydrol Proc 14:1423–1438

    Article  Google Scholar 

  • Thompson LG (2000) Ice core evidence for climate change in the Tropics: implications for our future. Quat Sci Rev 19:19–35

    Article  Google Scholar 

  • Tian LD, Yao TD, Sun WZ, Stievenard M, Jouzel J (2001) Relationship between δD and δ18O in precipitation on north and south of Tibetan Plateau and moisture recycling. Sci China Ser D 44(9):789–796

    Article  Google Scholar 

  • Tantawi MA, El-sayed E, Awad MA (1998) Hydrochemical and stable isotope study of groundwater in the Saint Catherine-Wadi Feiran area, south Sinai, Egypt. J Afr Earth Sci 26:277–284

    Article  Google Scholar 

  • Unnikrishna PV, MacDonnell JJ, Kendll C (2002) Isotopic variation in a Sierra Nevada snowpack and their relation to meltwater. J Hydrol 260:38–57

    Article  Google Scholar 

  • Varis O, Vakkilainen (2001) China’s 8 challenges to water resources management in the first quarter of the 21st Century. Geomorphology 41:93–104

    Article  Google Scholar 

  • Wang ZW (2003) Exploitation of water and power of Heishui Valley, Sichuan (in Chinese). Water Power 22:4–6

    Google Scholar 

  • Wang ZS, Zhou CF, Guan BH, Deng ZF, Zhi YB, Liu YH, Xu C, Fang SB, Xu Z, Yang HB, Liu FD, Zheng JW, Li HL, An SQ (2006) The headwater loss of the western plateau exacerbates China’s long thirst. Ambio 35:271–272

    Article  Google Scholar 

  • Whitfield J (2001) Tropical glaciers in retreat. Nature Science Update, 19 February 2001

  • Yang MX, Yao TD, Wang, HJ, Tian LD, Gou XH (2006) Estimating the criterion for determining water vapour sources of summer precipitation on the northern Tibetan Plateau. Hydrol Proc 20(3):505–513

    Article  Google Scholar 

  • Yin G, Ni SJ, Zhang QC (2001) Deuterium excess parameter and geohydrology significance: taking the geohydrology researches in Jiuzaigou and Yele, Sichuan for example (in Chinese). J Chengdu Univer Technol 28:251–254

    Google Scholar 

  • Yoshimura K, Liu Z, Cao J, Yuan D, Inokura Y and Noto M (2004) Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravine, Sichuang, China (in Chinese). Chem Geol 205:141–153

    Article  Google Scholar 

  • Zhang WJ, Li M, Wu ZG, Yang BG (2002) Features and evaluation of glacial landscape resources in Heishui Coutry, Sichuan Province (in Chinese). J Mount Sci 20:461–465

    Google Scholar 

  • Zhang XP, Yao TD, Tian LD (2003) Study on the fractionation mechanism of stable isotope in evaporation water body (in Chinese). J Glaciol Geocryol 25:65–71

    Google Scholar 

  • Zhuang P, Pen QX, Liu RY, Wu H (1995) Study on the decline state of the Abies Fabri forest in Emei Mountain (in Chinese). J Wuhan Bot Res 13:317–328

    Google Scholar 

Download references

Acknowledgements

This study was supported by The National Key Basic Research Special Funds (NKBRSF), PR China (No.2002CB111504). The authors would like to thank Drs. Y. H. Xie , S. T. Zhang and J. W. Zheng, Mrs. J. H. Jiang , Y. Zhang, G. J. Ren and X. Yao for their generous and ungrudging assistance during the experimental process. Many thanks also to the employees of the Heishui Weather Bureau for supplying necessary meteorological data. We also thank Professor Y. S. Huang of the Earth Sciences Department of Nanjing University for his advice and help.

Finally, we would like to thank G. Van Epps and H. Liu of Environmental and Occupational Health Sciences Institute at the State University of New Jersey, USA, for their editorial assistance. And special thanks also go to the three reviewers for their very useful comments and suggestions, and D. Siegel and S. Duncan for their final modifications and editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuqing An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., An, S., Xu, Z. et al. Spatio-temporal variation of stable isotopes of river waters, water source identification and water security in the Heishui Valley (China) during the dry-season. Hydrogeol J 16, 311–319 (2008). https://doi.org/10.1007/s10040-007-0260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0260-3

Key words

Navigation