Skip to main content
Log in

Numerical modeling of stress-permeability coupling in rough fractures

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A numerical model is described for coupled flow and mechanical deformation in fractured rock. The mechanical response of rock joints to changes in hydraulic pressure is strongly influenced by the geometric characteristics of the joint surfaces. The concept of this work is to combine straightforward finite element solutions with complex and realistic fracture surface geometry in order to reproduce the non-linear stress-deformation-permeability coupling that is commonly observed in fractures. Building on the numerous studies that have expanded the understanding of the key parameters needed to describe natural rough-walled fractures, new methods have been developed to generate a finite element mesh representing discrete fractures with realistic rough surface geometries embedded in a rock matrix. The finite element code GeoSys/Rockflow was then used to simulate the coupled effects of hydraulic stress, mechanical stress, and surface geometry on the evolving permeability of a single discrete fracture. The modeling concept was experimentally verified against examples from the literature. Modeling results were also compared to a simple interpenetration model.

Résumé

Un modèle numérique est utilisé pour étudier la déformation mécanique et l’écoulement couplé dans les roches fracturées. La réponse mécanique des joints dans la roche aux changements de la pression hydraulique est fortement influencée par les caractéristiques géométriques des surfaces du joint en question. Le concept derrière ce travail est la combinaison directe des solutions aux éléments finis avec des géométries de surface de fracture complexes et réalistes, de façon a reproduire le couple non linéaire tension - déformation - perméabilité qui est habituellement observé dans les fractures. Construites sur de nombreuses études qui ont étendu la compréhension des paramètres clés nécessaires à la description des fractures naturellement rugueuses, de nouvelles méthodes ont été développées pour générer un maillage aux éléments finis représentant des fractures discrètes avec des géométries de surface a la rugosité réaliste et parfaitement incluses dans la matrice rocheuse. Le code pour les éléments finis GeoSys/Rockflow a été utilisé pour simuler les effets couplés des tensions hydrauliques, tensions mécaniques, et la géométrie de la surface d’une perméabilité variable d’une simple fracture discrète. Le concept de la modélisation a été expérimentalement vérifié avec des exemples tires de la littérature. Les résultats de la modélisation ont été également comparées à un simple modèle d’interpénétration.

Resumen

Se describe un modelo numérico para flujo acoplado y deformación mecánica en roca fracturada. La respuesta mecánica de las grietas de las rocas a cambios en presión hidráulica está fuertemente influenciada por las características geométricas de las grietas superficiales. El concepto de este trabajo es combinar soluciones directas de elemento finito con la geometría superficial de fracturas complejas y realísticas para reproducir el acoplamiento no linear de permeabilidad-deformación-stress que frecuentemente se observa en fracturas. Apoyándose en los estudios numerosos que han incrementado el conocimiento de los parámetros clave necesarios para describir fracturas naturales de paredes rugosas, se han desarrollado nuevos métodos para generar una malla de elemento finito que representa fracturas discretas con geometrías superficiales rugosas realísticas inmersas en una matriz rocosa. Luego se utilizó el código de elemento finito GeoSys/Rockflow para simular los efectos acoplados de stress hidráulico, stress mecánico, y geometría superficial en la permeabilidad cambiante de una sola fractura discreta. Se verificó el modelo conceptual en contra de ejemplos de la literatura. Los resultados del modelo también se compararon con un modelo simple de interpenetración.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babadagli T (2006) Effective permeability estimation for 2-D fractal permeability fields. Math Geol 38:33–50

    Article  Google Scholar 

  • Bandis SC, Lumdsen AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 20:249–268

    Article  Google Scholar 

  • Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci 22:121–140

    Article  Google Scholar 

  • Beeler NM, Hickman SH (2001) A note on contact stress and closure in models of rock joints and faults. Geophys Res Lett 28:607–610

    Article  Google Scholar 

  • Berkowitz B (2002) Characterizing flow and transport in fractured geological media: a review. Adv Water Resour 25:861–884

    Article  Google Scholar 

  • Bernabe Y (1986) The effective pressure law for permeability in Chelmsford granite and Barre granite. Int J Rock Mech Min Sci 23:267–275

    Article  Google Scholar 

  • Berryman JG (1993) Effective-stress rules for pore-fluid transport in rocks containing two minerals. Int J Rock Mech Min Sci Geomech Abs 30:1165–1168

    Article  Google Scholar 

  • Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601

    Google Scholar 

  • Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media. Rev Geophys 39:347–383

    Article  Google Scholar 

  • Boulon MJ, Selvadurai APS, Benjelloun H, Feuga B (1993) Influence of rock joint degradation on hydraulic conductivity. Int J Rock Mech Min Sci Geomech Abs 30:1311–1317

    Article  Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res Solid Earth 92:1337–1347

    Article  Google Scholar 

  • Brown SR (1995) Simple mathematical model of a rough fracture. J Geophys Res Solid Earth 100:5941–5952

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985a) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res Solid Earth 90:12575–12582

    Article  Google Scholar 

  • Brown SR, Scholz CH (1985b) Closure of random elastic surfaces in contact. J Geophys Res Solid Earth 90:5531–5545

    Article  Google Scholar 

  • Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res Solid Earth 91:4939–4948

    Article  Google Scholar 

  • Brown S, Caprihan A, Hardy R (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res Solid Earth 103:5125–5132

    Article  Google Scholar 

  • Cook NGW (1992) Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. Int J Rock Mech Min Sci Geomech Abs 29:198–223

    Article  Google Scholar 

  • Dijk P, Berkowitz B, Bendel P (1999) Investigation of flow in water-saturated rock fractures using nuclear magnetic resonance imaging (NMRI). Water Resour Res 35:347–360

    Article  Google Scholar 

  • Doherty J (2002) PEST: model independent parameter estimation. Watermark Numerical Computing, Brisbane, Australia, 279 pp

  • Durham WB (1997) Laboratory observations of the hydraulic behavior of a permeable fracture from 3800 m depth in the KTB pilot hole. J Geophys Res Solid Earth 102:18405–18416

    Article  Google Scholar 

  • Durham WB, Bonner BP (1994) Self-propping and fluid flow in slightly offset joints at high effective pressures. J Geophys Res Solid Earth 99:9391–9399

    Article  Google Scholar 

  • Emmermann R, Lauterjung J (1997) The German Continental Deep Drilling Program KTB: overview and major results. J Geophys Res Solid Earth 102:18179–18201

    Article  Google Scholar 

  • Fredrich JT, Martin JW, Clayton RB (1995) Induced pore pressure response during undrained deformation of tuff and sandstone. Mech Mater 20:95–104

    Article  Google Scholar 

  • Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Min Sci 15: 249–257

    Article  Google Scholar 

  • Garg SK, Nur A (1973) Effective stress law for fluid-saturated porous rocks. J Geophys Res 78:5911–5921

    Article  Google Scholar 

  • Glover PWJ, Matsuki K, Hikima R, Hayashi K (1998) Synthetic rough fractures in rocks. J Geophys Res Solid Earth 103: 9609–9620

    Article  Google Scholar 

  • Goodman RE (1976) Methods of geological engineering in discontinuous rock. West, New York, pp 484

    Google Scholar 

  • Green DH, Wang HF (1986) Fluid pressure response to undrained compression in saturated sedimentary rock. Geophysics 51:948–956

    Article  Google Scholar 

  • Greenwood JA, Williamson J (1966) Contact of normally flat surfaces. Proc R Soc Lond Ser A Math Phys Sci 295:300–319

    Google Scholar 

  • Heiland J (2003) Laboratory testing of coupled hydro-mechanical processes during rock deformation. Hydrogeol J 11:122–141

    Google Scholar 

  • Hopkins DL (1990) The effect of surface roughness on joint stiffness, aperture, and acoustic wave propagation, PhD Thesis, The University of California at Berkeley, USA, 421 pp

  • Huenges E, Erzinger J, Kueck J, Engeser B, Kessels W, Haak V, Jones AG (1997) The permeable crust: geohydraulic properties down to 9101 m depth. J Geophys Res Solid Earth 102:18255–18265

    Article  Google Scholar 

  • Jensen JL (1991) Use of the geometric average for effective permeability estimation. Math Geol 23:833–840

    Article  Google Scholar 

  • Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Min Sci 39:409–427

    Article  Google Scholar 

  • Kessels W, Kück J (1995) Hydraulic communication in the crystalline rock between the two boreholes of the Continental Deep Drilling Programme in Germany. Int J Rock Mech Min Sci Geomech Abs 32:37–47

    Article  Google Scholar 

  • Kolditz O, Xie M, Kalbacher T, Wang W, Bauer S, McDermott CI, Chen C, Beyer C, Gronewold J, Walsh R, Du Y, Park CH, Buerger C, Delfs JO (2006) GeoSys/Rockflow: theory and user manual, Release 4.4, Groundwater Modelling Group, Center for Applied Geosciences, University of Tuebingen, Germany, 71 pp

  • Konzuk JS, Kueper BH (2004) Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour Res 40, W02402. DOI 10.1029/2003WR002356

  • Korsawe J, Starke G, Wang W, Kolditz O (2006) Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches. Comput Methods Appl Mech Eng 195:1096–1115

    Article  Google Scholar 

  • Lanaro F, Stephansson O (2003) A unified model for characterisation and mechanical behaviour of rock fractures. Pure Appl Geophys 160:989–998

    Article  Google Scholar 

  • Lee SD, Harrison JP (2001) Empirical parameters for non-linear fracture stiffness from numerical experiments of fracture closure. Int J Rock Mech Min Sci 38:721–727

    Article  Google Scholar 

  • Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Chichester, UK, 492 pp

    Google Scholar 

  • Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Physica Scripta 32:257–260

    Article  Google Scholar 

  • McDermott CI, Kolditz O (2006) Geomechanical model for fracture deformation under hydraulic, mechanical and thermal loads. Hydrogeol J 14:487–498

    Article  Google Scholar 

  • McDermott CI, Lodemann M, Ghergut I, Tenzer H, Sauter M, Kolditz O (2006) Investigation of coupled hydraulic-geomechanical processes at the KTB site: pressure-dependent characteristics of a long-term pump test and elastic interpretation using a geomechanical facies model. Geofluids 6:67–81

    Article  Google Scholar 

  • Millard A, Durin M, Stietel A, Thoraval A, Vuillod E, Baroudi H, Plas F, Bougnoux A, Vouille G, Kobayashi A, Hara K, Fujita T, Ohnishi Y (1995) Discrete and continuum approaches to simulate the thermo-hydro-mechanical couplings in a large, fractured rock mass. Int J Rock Mech Min Sci Geomech Abs 35:409–434

    Article  Google Scholar 

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147

    Article  Google Scholar 

  • Nguyen TS, Selvadurai APS (1995) Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: implications for nuclear fuel waste disposal. Int J Rock Mech Min Sci Geomech Abs 32:465–479

    Article  Google Scholar 

  • Nicholl MJ, Rajaram H, Glass RJ, Detwiler R (1999) Saturated flow in a single fracture: evaluation of the Reynolds equation in measured aperture fields. Water Resour Res 35:3361–3374

    Article  Google Scholar 

  • Noorishad J, Tsang CF, Witherspoon PA (1992) Theoretical and field studies of coupled hydromechanical behavior of fractured rocks. 1. Development and verification of a numerical simulator. Int J Rock Mech Min Sci Geomech Abs 29:401–409

    Article  Google Scholar 

  • Olsson R, Barton N (2001) An improved model of hydromechanical coupling during shearing in rock joints. Int J Rock Mech Min Sci 38:317–329

    Article  Google Scholar 

  • Oron AP, Berkowitz B (1998) Flow in rock fractures: the local cubic law assumption reexamined. Water Resour Res 34: 2811–2825

    Article  Google Scholar 

  • Peitgen H, Saupe D (eds) (1988) The science of fractal images. Springer, New York, 445 pp

  • Power WL, Durham WB (1997) Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration. Int J Rock Mech Min Sci 34:979–989

    Article  Google Scholar 

  • Power WL, Tullis TE (1992) Euclidean and fractal models for the description of rock surface roughness. J Geophys Res Solid Earth 96:415–424

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Morris JP (2000) Single fractures under normal stress: the relation between fracture specific stiffness and fluid flow. Int J Rock Mech Min Sci 37:245–262

    Article  Google Scholar 

  • Pyrak-Nolte LJ, Myer LR, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low pereamability rock. Paper presented at Proceedings of the International Congress on Rock Mechanics, Montreal, Canada, August 1987

  • Qi D, Hesketh T (2005) An analysis of upscaling techniques for reservoir simulation. Pet Sci Technol 23:827–842

    Article  Google Scholar 

  • Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abs 22:251–261

    Article  Google Scholar 

  • Renshaw CE (1995) On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J Geophys Res Solid Earth 100:24629–24636

    Article  Google Scholar 

  • Roberts WL, Campbell TJ, Rapp GR (1990) Encyclopedia of minerals, 2nd edn. Reinhold, New York, 979 pp

  • Rutqvist J, Stephanson O (2003) The role of hydromechanical coupling in fractured rock engineering. Hydrogeol J 11:7–40

    Google Scholar 

  • Schmittbuhl J, Schmitt F, Scholz C (1995) Scaling invariance of crack surfaces. J Geophys Res Solid Earth 100:5953–5973

    Article  Google Scholar 

  • Skempton AW (1954) The pore-pressure coefficients A and B. Geotechnique 4:143–147

    Article  Google Scholar 

  • Tsang YW (1992) Usage of equivalent apertures for rock fractures as derived from hydraulic and tracer tests. Water Resour Res 28:1451–1455

    Article  Google Scholar 

  • Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress J Geophys Res B 86:9287–9298

    Article  Google Scholar 

  • Unger AJA, Mase CW (1993) Numerical study of the hydromechanical behavior of two rough fracture surfaces in contact. Water Resour Res 29:2101–2114

    Article  Google Scholar 

  • Walsh JB (1981) Effect of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Min Sci Geomech Abs 18:429–435

    Article  Google Scholar 

  • Walsh JB, Grosenbaugh MA (1979) A new model for analyzing the effect of fractures on compressibility. J Geophys Res Solid Earth 84:3532–3536

    Article  Google Scholar 

  • Walsh JB, Brown SR, Durham WB (1997) Effective media theory with spatial correlation for flow in a fracture. J Geophys Res Solid Earth 102:22587–22594

    Article  Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, Princeton, NJ, USA, 287 pp

    Google Scholar 

  • Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermohydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69:162–201

    Article  Google Scholar 

  • Wang W, Datcheva M, Schanz T, Kolditz O (2006) A sub-stepping approach for elasto-plasticity with rotational hardening. Comput Mech 37:266–278

    Article  Google Scholar 

  • Whitehouse DJ, Archand JF (1970) The properties of random surfaces in significance of their contact. Proc R Soc Lond Ser A Math Phys Sci 316:97–121

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Xie H, Wang JA, Kwasniewski MA (1999) Multifractal characterization of rock fracture surfaces. Int J Rock Mech Min Sci 36:19–27

    Article  Google Scholar 

  • Zimmerman RW (2000) Coupling poroelasticity and thermoelasticity. Int J Rock Mech Min Sci 37:79–87

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding through Grant MC113/1–5 and KO 1591/2–4 and the Federal Institute for Geosciences and Natural Resources (Bundesanstalt fuer Geowissenschaften und Rohstoffe, BGR) under grant 201-4500023879 (DECOVALEX project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, R., McDermott, C. & Kolditz, O. Numerical modeling of stress-permeability coupling in rough fractures. Hydrogeol J 16, 613–627 (2008). https://doi.org/10.1007/s10040-007-0254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0254-1

Keywords

Navigation