Skip to main content
Log in

Fate of individual sewage disposal system wastewater within regolith in mountainous terrain

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In order to improve understanding of the fate of septic tank or individual sewage disposal system (ISDS) effluent in regolith overlying fractured-rock aquifers, effluent from an ISDS in such a setting was tracked via geophysical, hydrological, and geochemical methods. Under typical precipitation conditions, the effluent entered the fractured bedrock within 5 m of the boundary of the constructed infiltration area. During a period of unusually high spring recharge, the plume migrated between 50 and 100 m within the regolith before infiltrating the fractured bedrock. The chemical signature of the effluent is similar to that required to account for the decline in water quality, suggesting a causative relationship (as estimated from mass-balance models of the surface-water chemistry near the mouth of the basin). The elevated salt content of the effluent during periods of high natural recharge to the infiltration area correlates with elevated salt concentrations in surface and groundwater at the basin scale, suggesting that some of the effluent salt load may be stored in the unsaturated zone during dry periods and flushed during periods of elevated natural recharge.

Résumé

Afin de connaître mieux le devenir des fosses sceptiques et des systèmes individuels d’épuration d’effluent (ISDS en anglais) mis en place dans des régolites recouvrant des aquifères fracturés, la trajectoire de l’effluent d’un système ISDS installé dans un tel contexte a été étudiée en utilisant des méthodes géophysiques, hydrologiques et géochimiques. Dans le cas de conditions normales de précipitation, l’effluent a pénétré le sous-sol fracturé à moins de 5 m de la limite de la zone d’infiltration aménagée. Dans le cas d’une période de recharge printanière très importante, le panache s’est étendu entre 50 et 100 m à l’intérieur des régolites avant de s’infiltrer dans le sous-sol fracturé. La signature chimique de l’effluent montre que celui-ci pourrait être responsable de la dégradation de la qualité de l’eau et suggère une relation de cause à effet (également estimé par des modèles de bilan de masse pour la chimie des eaux de surface au niveau de la sortie du bassin). La teneur élevée en sels de l’effluent, lorsqu’une recharge naturelle importante a lieu au niveau de la zone d’infiltration, est corrélée avec des concentrations en sels élevées dans les eaux de surface et souterraine à l’échelle du basin. Ceci suggère qu’une partie de la charge en sels de l’effluent soit stockée dans la zone non-saturée du sol lors des périodes sèches et qu’elle soit remobilisée lors des périodes de recharge naturelle importante.

Resumen

Para mejorar la comprensión del destino de un efluente de tanque séptico o sistema individual de eliminación de aguas residuales (SIEAR) instalado en regolita que sobreyace acuíferos de roca fracturada, un efluente de un tanque séptico fue monitoreado con métodos geofísicos, hidrológicos y geoquímicos. Bajo condiciones típicas de precipitación, el efluente entró en el basamento fracturado dentro de 5 m del área construida para infiltración. Durante un periodo con recarga inusualmente alta, la pluma migró entre 50 y 100 m dentro de la regolita antes de infiltrar el basamento fracturado. La composición química del efluente es similar a la requerida para considerar un deterioro de calidad de agua sugiriendo una relación causal (partiendo de modelos de balance de masas de la química del agua superficial cerca del inicio de la cuenca). El contenido elevado de sal en el efluente durante periodos de alta recarga natural al área de infiltración se correlaciona bien con concentraciones elevadas de sal en agua superficial y subterránea en la escala de la cuenca sugiriendo que algo de la carga de sal del efluente podría ser almacenado en la zona no saturada durante periodos secos y liberado durante periodos de elevada recarga natural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bossong C, Caine J, Stannard D, Flynn J, Stevens M, Heiny-Dash J (2003) Hydrologic conditions and assessment of water resources in the Turkey Creek watershed, Jefferson County, Colorado, 1998–2001. US Geol Surv Water Resour Invest Rep 03–4034

  • Community Collaborative Rain, Hail and Snow Network (CoCoRaHS) (2004) Community precipitation data. http://new.cocorahs.org/. Cited 20 Feb 2004

  • Dawes L, Goonetilleke A, Cox M (2005) Assessment of physical and chemical properties of sub-tropical soil to predict long term effluent treatment potential. Soil Sediment Contam 14(3):211–230

    Article  Google Scholar 

  • Hofstra W, Hall D (1975) Geologic control of supply and quality of water in the mountainous part of Jefferson County, Colorado. Colo Geol Surv Bull 36, 51 pp

  • Jefferson County (2003) Jefferson County, Colorado: Demographics. http://co.jefferson.co.us/planning/planning_T59_R37.htm. Cited 10 Oct 2003

  • Morgan K (2000) Spatial analysis and modeling of geochemical distribution to assess fracture flow in Turkey Creek Basin, Jefferson County, Colorado. MSc Thesis, Colorado School of Mines, USA

  • Poeter E, Thyne G, VanderBeek G, Güler C (2003) Ground water in the Turkey Creek Basin of the Rocky Mountain front range in Colorado. In: Boyer D, Santi P, Rogers P (eds) Engineering geology in Colorado: contributions, trends, and case histories. AEG Spec Publ 15, Association of Engineering Geologists, Denver, CO, and CGS Spec Publ 55, Colorado Geological Survey, Denver, CO

  • Ptacek C (1998) Geochemistry of a septic-system plume in a coastal barrier bar, Point Pelee, Ontario, Canada. J Contam Hydrol 33(3–4):293–312

    Article  Google Scholar 

  • Robertson W (1995) Development of steady-state phosphate concentrations in septic system plumes. J Contam Hydrol 19(4):289–305

    Article  Google Scholar 

  • Stannard D (1988) Use of a hemispherical chamber for measurement of evapotranspiration. US Geol Surv Open-file Rep 88–452

  • Stannard D, Paul W, Poeter E (2005) Estimation of evapotranspiration from a domestic leach-field and surrounding lawn using a combined measurement and modeling approach. Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract H41A–0397

    Google Scholar 

  • Thyne G, Güler C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42(5):711–723

    Article  Google Scholar 

  • Yacob S (2004) Using multivariate statistical analyses to characterize the effects of population growth on water quality in a mountain watershed. MSc Thesis, Colorado School of Mines, USA

Download references

Acknowledgements

The authors thank the following entities for their financial support of this project: the Colorado Water Resources Research Institute, agreement No. G-2963-1; Jefferson County Department of Health and Environment, EPA-RGI grant No. 975307; and, the Edna Bailey Sussman Environmental Internship Foundation. Research and field equipment was supplied by the following people: Y. Li, Colorado School of Mines Dept. of Geophysics; D. Stannard, USGS; J. Drexler, University of Colorado-Boulder Earth Sciences Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Poeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dano, K., Poeter, E. & Thyne, G. Fate of individual sewage disposal system wastewater within regolith in mountainous terrain. Hydrogeol J 16, 691–699 (2008). https://doi.org/10.1007/s10040-007-0244-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0244-3

Keywords

Navigation