Skip to main content

Advertisement

Log in

Determination of the parameter pattern and values for a one-dimensional multi-zone unconfined aquifer

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In an aquifer, heterogeneity plays an important role in governing groundwater flow. Hence, aquifer characterization should involve both the pattern and values of the hydrogeological parameters. A new analytical solution describing the one-dimensional groundwater flow in a multi-zone unconfined aquifer is presented, and a methodology developed from the analytical solution and a heuristic approach for determining the pattern and values of the aquifer parameters are proposed. The analytical solution demonstrates that the hydraulic head varies spatially and is influenced by aquifer heterogeneity. Simulated annealing, a heuristic approach, is incorporated with the solution to simultaneously identify the pattern and values of the hydraulic conductivity for a horizontal multi-zone unconfined aquifer. This approach may be used to give an approximate result for a two-dimensional problem by dividing the model area into a number of transects along the transverse direction, identifying the parameter values along the longitudinal direction for each transect, and then smoothing the identified results.

Résumé

Dans un aquifère, l’hétérogénéité joue un rôle important en gouvernant l’écoulement des eaux souterraines. En conséquence, la caractérisation de l’aquifère devrait inclure et l’espace et les valeurs des paramètres hydrogéologiques. Une nouvelle solution analytique décrivant l’écoulement des eaux souterraines uni-dimensionnel dans un aquifère non-confiné à plusieurs couches est présenté, et la méthodologie développée à partir de la solution analytique et une approche heuristique pour déterminer l’espace et les valeurs des paramètres de l’aquifère sont proposées. La solution analytique démontre que la charge hydraulique varie spatialement et est influencée par l’hétérogénéité de l’aquifère. Le « recuit simulé », une approche heuristique d’optimisation, est incorporé avec la solution pour identifier simultanément l’espace et les valeurs de conductivités hydrauliques pour un aquifère libre horizontal et multi-zones. Cette approche peut être utilisée pour donner un résultat approximatif pour un problème bidimensionnel en divisant l’aire du modèle en une suite de plusieurs sections, identifiant les valeurs de paramètre le long de la direction longitudinale pour chaque section, et ensuite en arrondissant les résultats.

Resumen

En un acuífero, la heterogeneidad juega un papel importante en el flujo del agua subterránea. Así, la caracterización de un acuífero debe tener en cuenta tanto la disposición como los valores de los parámetros hidráulicos. Se presenta un nueva solución analítica que describe el flujo del agua subterránea en una dimensión en un acuífero libre multi-zona, y se propone una metodología desarrollada a partir de la solución analítica y la aproximación heurística para determinar la disposición y los valores de los parámetros del acuífero. La solución analítica demuestra que el nivel piezométrico varía espacialmente y está influenciado por la heterogeneidad del acuífero. Un templado simulado, una aproximación heurística, se ha incorporado a la solución para identificar simultáneamente la disposición y los valores de la conductividad hidráulica para un acuífero libre horizontal multi-zona. Esta aproximación puede ser utilizada para proporcionar un resultado aproximado en un problema bidimensional dividiendo el área del modelo en un número de transectos a lo largo de la dirección transversa, identificando los valores del parámetro a lo largo de la dirección longitudinal para cada transecto, y entonces suavizando los resultados identificados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aarts E, Korts J, Van Laarhoven PJM (1997) Simulated annealing. In: Aarts E, Lenstra JK (ed) Local search in combinatorial optimization. Wiley, Chichester, pp 91–120

    Google Scholar 

  • Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse problem in hydrogeology. Hydrogeol J 13:206–222

    Google Scholar 

  • Cunha MDC, Sousa J (1999) Water distribution network design optimization: simulated annealing approach. J Water Resour Plan Manage 125:215–220

    Google Scholar 

  • Dougherty D, Marryott R (1991) Optimal groundwater management: 1. simulated annealing. Water Resour Res 27:2493–2508

  • Fetter CW (1994) Applied hydrogeology. Prentice-Hall, Englewood Cliffs, New Jersey, 691 pp

  • Goffe B (1995) Economics department, University of California, Berkeley. Software Archive. http://emlab.berkeley.edu/Software/abstracts/goffe895.html. Cited 8 Mar 2007

  • Keidser A, Rosbjerg DA (1991) A comparison of four inverse approaches to groundwater flow and transport parameter identification. Water Resour Res 24:670–682

    Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680

    Article  Google Scholar 

  • Leng CH, Yeh HD (2003) Aquifer parameter identification using the extended Kalman filter. Water Resour Res 39:1062. DOI 10.1029/2001WR000840

    Google Scholar 

  • Marryott AD, Dougherty DE, Stoller RL (1993) Optimal groundwater management, 2: application of simulated annealing to a field-scale contamination. Water Resour Res 29:847–860

    Article  Google Scholar 

  • Marsily G, Delhomme JP, Delay F, Buoro A (1999) 40 years of inverse problems in hydrogeology. Comptes Rendus Accad Sci, Sci Terre Planets 329:73–87

    Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Romeo F, Sangiovanni-Vincentelli A (1991) A theoretical framework for simulated annealing. Algorithmica 6:302–345

    Article  Google Scholar 

  • Schwartz FW, Zhang H (2003) Fundamentals of ground water. Wiley, New York, 583 pp

    Google Scholar 

  • Yeh WWG (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. Water Resour Res 22:95–108

    Article  Google Scholar 

  • Yeh HD (1987) Theis’ solution by nonlinear least-squares and finite-difference Newton’s method. Ground Water 25:710–715

    Article  Google Scholar 

  • Yeh HD, Han HY (1989) Numerical identification of parameters in leaky aquifers. Ground Water 27:655–663

    Article  Google Scholar 

  • Yeh HD, Lin YC, Huang YC (2007) Parameter identification for leaky aquifers using global optimization methods. Hydrol Process 21:862–872

    Article  Google Scholar 

  • Zheng C, Wang P (1996) Parameter structure identification using tabu search and simulated annealing. Adv Water Resour 19:215–224

    Article  Google Scholar 

Download references

Acknowledgements

This study was partly supported by the Taiwan National Science Council under grant NSC94-2211-E-009-015. The authors would like to thank the associated editor and two anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hund-Der Yeh.

Appendix

Appendix

The equation for one-dimensional steady-state groundwater flow in a heterogeneous unconfined aquifer with recharge is

$$ \frac{\partial } {{\partial x}}{\left( {k_{i} h_{i} \frac{{\partial h_{i} }} {{\partial x}}} \right)} + w = 0,i = 1,2,...,n $$
(6)

where h i is the hydraulic head at x in the ith zone, x is the distance from the origin, K i is the hydraulic conductivity in the ith zone, n is the number of zones and w is the recharge rate. Integrating Eq. (1) yields the expression

$$ h^{2}_{i} = - \frac{w} {{K_{i} }}x^{2} + C_{1} x + C_{2} $$
(7)

where C 1 and C 2 are constants of integration. The left-hand side and right-hand side boundary conditions of the problem domain are, respectively,

$$ h\left| {_{{x = 0}} = h_{0} } \right. $$
(8)

and

$$ h\left| {_{{x = L}} } \right. = h_{L} $$
(9)

where h 0 is the hydraulic head at the origin, h L is the hydraulic head at L, and L is the distance from the origin at the point h L is measured. In addition, the continuity requirements for the hydraulic head and the flow rate per unit width at x i are, respectively,

$$ h_{i} {\left( {x_{i} } \right)} = h_{{i + 1}} {\left( {x_{i} } \right)} $$
(10)

and

$$ q^{\prime }_{i} {\left( {x_{i} } \right)} = q^{\prime }_{{i + 1}} {\left( {x_{i} } \right)} $$
(11)

where h i (x i ) is the hydraulic head, x i is the ith zone boundary, and \( q^{\prime }_{i} {\left( {x_{i} } \right)} \) is the flow rate per unit width at x i in the ith zone. By solving the above equations, the hydraulic head and the flow rate per unit width in the ith zone of the horizontal multi-zone unconfined aquifer with recharge are therefore, respectively,

$$ \begin{aligned} & h_{i} {\left( x \right)} = {\sqrt {{ - wx^{2} } \mathord{\left/ {\vphantom {{ - wx^{2} } {{K_{i} + \lambda x} \mathord{\left/ {\vphantom {{K_{i} + \lambda x} {K_{i} + {\sum\limits_{j = 1}^i {\Delta k_{j} } }\lambda x_{{j - 1}} + w{\sum\limits_{j = 1}^i {\Delta k_{j} x^{2}_{{j - 1}} + h^{2}_{0} } }}}} \right. \kern-\nulldelimiterspace} {K_{i} + {\sum\limits_{j = 1}^i {\Delta k_{j} } }\lambda x_{{j - 1}} + w{\sum\limits_{j = 1}^i {\Delta k_{j} x^{2}_{{j - 1}} + h^{2}_{0} } }}}}} \right. \kern-\nulldelimiterspace} {{K_{i} + \lambda x} \mathord{\left/ {\vphantom {{K_{i} + \lambda x} {K_{i} + {\sum\limits_{j = 1}^i {\Delta k_{j} } }\lambda x_{{j - 1}} + w{\sum\limits_{j = 1}^i {\Delta k_{j} x^{2}_{{j - 1}} + h^{2}_{0} } }}}} \right. \kern-\nulldelimiterspace} {K_{i} + {\sum\limits_{j = 1}^i {\Delta k_{j} } }\lambda x_{{j - 1}} + w{\sum\limits_{j = 1}^i {\Delta k_{j} x^{2}_{{j - 1}} + h^{2}_{0} } }}}} } \\ & \\ \end{aligned} $$
(12)

and

$$ q^{\prime }_{i} {\left( x \right)} = wx - \lambda \mathord{\left/ {\vphantom {\lambda 2}} \right. \kern-\nulldelimiterspace} 2 $$
(13)

where

$$ \lambda = \frac{{{\left[ {{\sum\limits_{i = 1}^n {{w{\left( {x^{2}_{i} - x^{2}_{{i - 1}} } \right)}} \mathord{\left/ {\vphantom {{w{\left( {x^{2}_{i} - x^{2}_{{i - 1}} } \right)}} {k_{i} }}} \right. \kern-\nulldelimiterspace} {k_{i} }} }} \right]} + {\left( {h^{2}_{L} - h^{2}_{0} } \right)}}} {{{\sum\limits_{i = 1}^n {{{\left( {x_{i} - x_{{i - 1}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {x_{i} - x_{{i - 1}} } \right)}} {K_{i} }}} \right. \kern-\nulldelimiterspace} {K_{i} }} }}} $$
(14)

and

$$ \Delta k_{j} = {\left( {1 \mathord{\left/ {\vphantom {1 {K_{j} }}} \right. \kern-\nulldelimiterspace} {K_{j} } - 1 \mathord{\left/ {\vphantom {1 {K_{{j + 1}} }}} \right. \kern-\nulldelimiterspace} {K_{{j + 1}} }} \right)} $$
(15)

Equation (12) shows that the hydraulic head varies spatially and is influenced by the heterogeneous hydraulic conductivity of the multi-zone unconfined aquifer. When the aquifer is homogeneous, Eqs. (12) and (13) can, respectively, be reduced to (Fetter 1994)

$$ h = {\sqrt {h^{2}_{0} - \frac{{{\left( {h^{2}_{0} - h^{2}_{L} } \right)}}} {L}x + \frac{w} {K}{\left( {L - x} \right)}x} } $$
(16)

and

$$ q\prime = - Kh\frac{{\partial h}} {{\partial x}} = \frac{{K{\left( {h^{2}_{0} - h^{2}_{L} } \right)}}} {{2L}} - w{\left( {\frac{L} {2} - x} \right)} $$
(17)

Note that Eq. (16) can be employed to find the elevation of the water table everywhere between two points located L distance apart if the saturated thickness of the aquifer is known at the two end points.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YC., Yeh, HD. & Huang, YC. Determination of the parameter pattern and values for a one-dimensional multi-zone unconfined aquifer. Hydrogeol J 16, 205–214 (2008). https://doi.org/10.1007/s10040-007-0228-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0228-3

Keywords