Hydrogeology Journal

, Volume 16, Issue 1, pp 167–182 | Cite as

The hydrochemical characteristics and evolution of groundwater and surface water in the Heihe River Basin, northwest China

Report

Abstract

A combination of isotopic and chemical indicators has been used to characterize rainfall, surface water and groundwater in the Heihe River Basin, China. Surface- vs. groundwater chemistry data enabled geographical zones and chemical types to be differentiated. The dissolution of halite, Glauber’s salt, gypsum, dolomite and calcite determine Na+, Cl, Mg2+, Ca2+, \( {\text{SO}}^{{2 - }}_{4} \) and \( {\text{HCO}}^{ - }_{3} \) chemistry, but other processes such as evaporation, ion exchange, and deposition also influence the water composition. The majority of deep confined groundwaters are tritium-free and less mineralized than in the shallow aquifer. Radiocarbon values in the deeper groundwaters range from 18.8 to 38.9 pmc, and 80 pmc probably represents the upper limit of initial 14C activity; this yields ages of approximately 5,960–11,971 years BP, which is about 3,000 years older than those calculated by models in previous work. The shallow aquifer exhibits fairly high and variable tritium activities (4–75 TU), evidence of recent recharge and low residence time (<60 years), which is in line with estimates from previous work. Isotopic signatures indicate formation of deeper groundwaters in a colder and wetter climate during the late Pleistocene and Holocene. The results suggested that significant changes are urgently needed in water-use strategy to achieve sustainable development.

Keywords

Arid regions Groundwater/surface-water relations Hydrochemistry Stable isotopes Northwest China 

Résumé

Une combinaison de plusieurs indicateurs isotopiques et chimiques a été utilisée dans le but de caractériser les précipitations, les eaux de surface et les eaux souterraines dans le Bassin de la Rivière Heihe, en Chine. La confrontation des chimies des eaux souterraines et de surface a permis de différentier plusieurs secteurs géographiques et faciès chimiques. Les compositions chimiques en Na+, Cl, Mg2+, Ca2+, \( {\text{SO}}^{{2 - }}_{4} \) et \( {\text{HCO}}^{ - }_{3} \) sont déterminées par la dissolution de la halite, du sel de Glauber, du gypse, de la dolomite et de la calcite, mais d’autres processus peuvent également avoir une influence, comme l’évaporation, les échanges de bases et la sédimentation. La majorité des eaux souterraines captives profondes ne contiennent pas de tritium, et sont moins minéralisées que dans l’aquifère superficiel. Les valeurs de carbone 14 dans l’aquifère le plus profond sont comprises entre 18.8 et 38.9 pcm, pour une valeur maximum probable d’activité initiale de 80 pcm; les âges estimés correspondants sont compris entre 5,960 et 11,971 ans, soit environ 3,000 ans de plus que ceux calculés auparavant par les modèles. L’aquifère superficiel présente des activités tritium plutôt élevées et variables (4 à 75 UT), démontrant l’existence d’une alimentation récente et d’un temps de résidence faible (<60 ans), ce qui concorde avec les études antérieures. Les signatures isotopiques indiquent une alimentation des eaux souterraines les plus profondes au cours d’épisodes climatiques plus froids et plus humides qu’actuellement, à la fin du Pléistocène et à l’Holocène. Les résultats suggèrent que des changements significatifs dans la planification des usages de l’eau sont nécessaires et urgents dans des perspectives d’exploitation durable.

Resumen

Se ha utilizado una combinación de indicadores isotópicos y químicos para caracterizar la precipitación, el agua superficial y el agua subterránea en la Cuenca del Río Heihe, China. Los datos químicos de aguas superficiales frente a las subterráneas no permiten diferenciar zonas geográficas y tipos químicos. La disolución de halita, sal de Glauber, yeso, dolomita y calcita determina la química de Na+, Cl, Mg2+, Ca2+, \( {\text{SO}}^{{2 - }}_{4} \) y \( {\text{HCO}}^{ - }_{3} \), pero otros procesos, como evaporación, intercambio de iones y precipitación influyen también en la composición del agua. La mayoría de las aguas subterráneas profundas confinadas no tienen Tritio y están menos mineralizados que el acuífero superficial. Los valores de radiocarbono en las aguas subterráneas más profundas oscilan entre 18.8 y 38.9 pmc, y el valor de 80 pmc representa probablemente el límite superior de la actividad inicial de 14C; proporcionando edades de aproximadamente 5,960–11,971 años BP, que son unos 3,000 años más antiguas de las calculadas mediante modelización en trabajos previos. El acuífero superficial tiene actividades de tritio bastante más altas y variables (4–75 UT), evidenciando una recarga reciente y unos tiempos de residencia bajos (<60 años), lo cual está en la línea de lo estimado en trabajos previos. Los datos isotópicos apuntan a la formación de aguas subterráneas más profundas en un clima más frío y húmedo durante el Pleistoceno superior y el Holoceno. Los resultados sugieren que se necesita hacer cambios significativos en la estrategia de uso del agua para alcanzar un desarrollo sostenible.

References

  1. Chen LH (1996) Desertization and its control in the lower reach of the Heihe River (in Chinese). Nat Resour 2:35–42Google Scholar
  2. Chen WX (2002) The hydrological characteristics of Heihe River Basin. Hydrology 22:57–60Google Scholar
  3. Chen ZY, Nie ZL, Zhang GH, Wan L, Chen XX, He ML (2004) Groundwater renewability based on groundwater ages in the Heihe valley alluvial Basin, northwestern China. Acta Grolog Sin 4:560–567Google Scholar
  4. Chen ZY, Nie ZL, Zhang GH, Wan L, Shen JM (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, northwestern China. Hydrogeol J 14:1635–1651CrossRefGoogle Scholar
  5. Deutsch WJ (1997) Groundwater geochemistry: fundamentals and application to contamination. CRC, Boca Raton, FL, USAGoogle Scholar
  6. Edmunds WM, Ma JZ, Hertig WA, Kipfer R, Darbyshire DPF (2006) Groundwater recharge history and hydrogeochemical evolution in the Mianqin Basin, northwest China. Appl Geochem 21:2148–2170CrossRefGoogle Scholar
  7. Eichinger L (1980) Experience gathered in low-level measurement of 3H in water. In: Low -level 3H measurement, IAEATECDOC-246, 43–64. IAEA, Vienna, AustriaGoogle Scholar
  8. Fan XP (1990) The characteristic of groundwater resources and environmental problems caused by overexploitation of water resources in the arid region of northwestern China (in Chinese). Hydrol Eng Geol 1:6–10Google Scholar
  9. Fan XP (1991) Characteristics of the stream-aquifer systems and rational utilization of water resources in the Heihe River (in Chinese). Gansu Geol 12:1–16Google Scholar
  10. Feng Q (1999) Sustainable utilization of water resources in Gansu Province. Chin J Arid Land Res 11:293–299Google Scholar
  11. Feng Q, Liu W, Su YH, Zhang YW, Si JH (2004) Distribution and evolution of water chemistry in Heihe River basin. Environ Geol 45:947–956CrossRefGoogle Scholar
  12. Fontes JC (1983) Dating of groundwater: guidebook on nuclear techniques. Technical Report Series no 91. IAEA, ViennaGoogle Scholar
  13. Fontes JCh, Garnier JM (1979) Determination of the initial activity of the total dissolved carbon: a review of the exiting models and a new approach. Water Resour Res 12:399–413CrossRefGoogle Scholar
  14. Gao QZ (1991) Development and utilization of water resources in the Heihe River catchment. Gansu Science and Technology Press, Lanzhou, China, 205 ppGoogle Scholar
  15. Gao Q, Li F (1990) Rational development and utilization of water resources in the Heihe River basin of northwest China. Gansu Science and technology Press, Lanzhou, pp 23–95Google Scholar
  16. Gao Q, Wu Y, Liu F (2004) Unified management of water resources and enhance of carrying capacity in Heihe River Basin (in Chinese). J Desert Res 24(2):156–161Google Scholar
  17. Gibbs R (1970) Mechanism controlling world river water chemistry. Science 170:1088–1090CrossRefGoogle Scholar
  18. Gibbs R (1971) Mechanism controlling world river water chemistry: evaporation-crystallization process. Science 172:871–872Google Scholar
  19. Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–495CrossRefGoogle Scholar
  20. Guo HM, Wang YX (2004) Hydrogeochemical processes in shallow Quaternary aquifers from the northern part of the Datong Basin, China. Appl Geochem 19:19–27CrossRefGoogle Scholar
  21. Hydrology Survey Bureau of Gansu Province (2002) The evaluation of the groundwater resource in the Heihe River Basin. Gansu Science and Technology Press, Lanzhou, ChinaGoogle Scholar
  22. IAEA (2004) Global Network of Isotopes in Precipitation (GNIP) Database IAEA/WMO, Vienna, Austria, http://www.isohis.iaea.org. Cited 5 September 2005
  23. Li J, Wen S, Zhang J (1979) Study on the times, extent and form of the Tibet plateau upheaving. Sci China 9:608–616Google Scholar
  24. Liu MG (1998) Atlas of physical geography of China. China Map Press, Beijing, 252 ppGoogle Scholar
  25. Liu JD (2001) Tritium concentration changing tendency study of China atmospheric precipitation in the recent ten years. Site Invest Sci Technol 112:11–19Google Scholar
  26. Lloyd JW, Heathcote JA (1985) Natural inorganic hydrochemistry in relation to groundwater. Oxford University Press, New YorkGoogle Scholar
  27. Ma JZ, Wang XS, Edmunds WM (2005) The characteristics of groundwater resources and their changes under the impacts of human activity in the arid north-west China: a case study of the Shiyang River Basin. J Arid Environ 61:277–295CrossRefGoogle Scholar
  28. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923Google Scholar
  29. Qi SZ, Luo F (2005) Water environmental degradation of the Heihe River Basin in arid northwestern China. Environ Monit Assess 108:205–215CrossRefGoogle Scholar
  30. Richter BC, Kreitler WC (1993) Geochemical techniques for identifying sources of groundwater salinization. CRC Press, New York, ISBN 1-56670-000-0Google Scholar
  31. Ronit N, Eilon A, Ofer D, Ilan N (1997) Water salinization in arid regions-observations from the Negev desert, Israel. J Hydrol 196:271–296CrossRefGoogle Scholar
  32. Sami K (1992) Recharge mechanisms and geochemical process in a semi-arid sedimentary basin, Eastern Cape, South African. J Hydrol 139:27–48CrossRefGoogle Scholar
  33. Schoeller H (1965) Hydrodynamique dans le karst [Hydrodynamics of karst]. Actes du Colloques de Dubrovnik, IAHS/UNESCO, Wallingford, UK and Paris, France, pp 3–20Google Scholar
  34. Shi YF, Zhang XS (1995) The influence of climate changes on the surface water resources in the arid areas of Northwest China. Sci China Ser B 25:968–977Google Scholar
  35. Wang GX, Cheng GD (1998) Changes of hydrology and ecological environment during late 50 years in Heihe River basin. J Des Res 18:233–238Google Scholar
  36. Wang GX, Cheng GD (1999) Land desertification status and developing trend in the Hei River basin. J Des Res 19:368–374Google Scholar
  37. Wang GX, Cheng GD (2000) The characteristics of water resources and the changes of the hydrological process and environment in arid zone of northwest China. Environ Geol 39(7):783–790CrossRefGoogle Scholar
  38. Wen X, Wu Y, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina basin, northwestern China. Environ Geol 48:665–675CrossRefGoogle Scholar
  39. Wu Y, Mu F, He Y (2000) Analysis of the interchange path between surface water and groundwater from Dingxin to Ejina in Hei River Catchment, western China (in Chinese). J Glaciol Geolocryol 22(1):73–77Google Scholar
  40. Wu X, Shi S, Li ZH (2002) The study of the aquifer system in the lower reaches of Heihe River Ejina Basin, Northwest China (II) (in Chinese). Hydrol Eng Geol 2:30–33Google Scholar
  41. Wu Y, Wen X, Zang Y (2004) Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of northwestern China. Environ Geol 45:647–653CrossRefGoogle Scholar
  42. Xia J, Takeuchi K (1999) Introduction to special issue on barriers to sustainable management of water quantity and quality. Hydrol Sci J 44(4):503–506CrossRefGoogle Scholar
  43. Zhu YH, Wu YQ, Sam D (2004) A survey: obstacles and strategies for the development of ground-water resources in arid inland river basins of western China. J Arid Environ 59:351–367CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Bioinformatics, School of Mathematics and StatisticsLanzhou UniversityLanzhouChina
  2. 2.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations