Skip to main content
Log in

Use of geochemical modeling to evaluate the hydraulic connection of aquifers: a case study from Chianan Plain, Taiwan

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Aquifers are generally composed of highly permeable layers that can conduct a considerable amount of groundwater. Traditionally, aquifer units are correlated through the concept of lithostratigraphy. For low-permeable aquifers, it is difficult to define the spatial distribution of hydrogeological units, and this study attempts to use geochemical modeling to identify the groundwater flow paths in an area of Taiwan. Multiple geochemical analyses, including groundwater chemistry; stable isotopic compositions of hydrogen, oxygen and carbon; and radiocarbon contents were performed. Using these parameters as the constraints of geochemical models, the hydraulic connection was examined between pairs of possibly interlinked wells along four selected cross sections, and the conceptual groundwater model was accordingly established. The resultant model suggests that the hydraulic connection between aquifers should be correlated with the concept of chronological stratigraphy, especially for low-permeable, unconsolidated aquifers. Using Darcy’s law, the hydraulic conductivities of the fine-sand aquifers were estimated to be between 3.14 × 10−5 and 1.80 × 10−4 m/s, which are roughly one order of magnitude higher than those derived by in situ pumping tests. The substantial extraction of groundwater over a long period in the studied area could accelerate groundwater flow, leading to an overestimation of the aquifer permeability.

Résumé

En règle générale, les aquifères sont constitués de couches très perméables capables de conduire des quantités d’eau considérables. Les unités aquifères sont traditionnellement corrélées d’un point de vue lithostratigraphique. Dans le cas des aquifères à faible perméabilité, il s’avère difficile de définir une distribution spatiale des unités hydrogéologiques, et cette étude tente d’utiliser la modélisation géochimique pour identifier les cheminements des eaux souterraines dans un secteur de Taiwan. Plusieurs analyses géochimiques ont été réalisées ; elles incluent la chimie des eaux souterraines, les isotopes stables de l’hydrogène, de l’oxygène et du carbone et l’abondance en carbone 14. En utilisant ces paramètres comme contraintes pour les modèles géochimiques, les liaisons hydrauliques entre les puits potentiellement interconnectés ont été étudiées deux par deux, le long de quatre coupes présélectionnées, et le modèle conceptuel a été établi en conséquence. Ce modèle résultant suggère que les connexions hydrauliques inter-aquifères devraient être corrélées avec les concepts stratigraphiques, surtout pour les aquifères non consolidés à faible perméabilité. Les perméabilités dans les aquifères de sables fins ont été estimées par la loi de Darcy entre 3.14 × 10−5 et 1.80 × 10−4 m/s, soit environ un ordre de grandeur au-dessus de celles issues des tests de pompage sur site. L’exploitation substantielle des eaux souterraines sur une longue période dans la zone d’étude peut accélérer les écoulements souterrains, menant à une surestimation de la perméabilité de l’aquifère.

Resumen

Los acuíferos están generalmente compuestos de capas muy permeables que pueden conducir una cantidad considerable de agua subterránea. Tradicionalmente, se ponen en correlación las unidades acuíferas a través del concepto de litoestratigrafía. Para los acuíferos de baja-permeabilidad, es difícil de definir la distribución espacial de unidades hidrogeológicas y este estudio intenta usar modelamiento geoquímico para identificar las direcciones del flujo de agua subterránea en un área de Taiwán. Se realizó el análisis geoquímico múltiple, incluyendo la química del agua subterránea, la composición de isótopos estables de hidrógeno, oxígeno y carbono, y el contenido de radiocarbono. Usando estos parámetros como limitantes de modelos geoquímicos, la conexión hidráulica se examinó entre pares de pozos posiblemente interrelacionados, a lo largo de cuatro cortes transversales seleccionados y de acuerdo con esto se estableció el modelo conceptual del agua subterránea. El modelo resultante sugiere que la conexión hidráulica entre los acuíferos deba interrelacionarse con el concepto de estratigrafía cronológica, sobre todo para los acuíferos sin consolidar de baja permeabilidad. Usando la ley de Darcy, se estimaron las conductividades hidráulicas de los acuíferos de arena fina obteniendo valores entre 3.14 × 10−5 y 1.80 × 10−4 m/s, las cuales son aproximadamente un orden de magnitud mayor, que aquéllos obtenidos in situ por las pruebas de bombeo. La extracción considerable de agua subterránea durante un periodo largo en el área estudiada, podría acelerar el flujo de agua subterránea, llevando a una sobrestimación de la permeabilidad en los acuíferos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • André L, Franceschi M, Pouchan P, Atteia O (2005) Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305:40–62

    Article  Google Scholar 

  • Appelo CAJ (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour Res 30(10):2793–2805

    Article  Google Scholar 

  • Bajjali W (2006) Recharge mechanism and hydrochemistry evaluation of groundwater in the Nuaimeh area, Jordan, using environmental isotope techniques. Hydrogeol J 14:180–191

    Article  Google Scholar 

  • Ball JW, Nordstrom DK (1991) User’s manual forWATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geological Survey Open-File Report 91–183

  • Bouhlassa S, Aiachi A (2002) Groundwater dating with radiocarbon: application to an aquifer under semi-arid conditions in the South of Morocco (Guelmime). Appl Radiat Isotopes 56:637–647

    Article  Google Scholar 

  • Buckau G, Artinger R, Geyer S, Wolf M, Fritz P, Kim JI (2000) 14C dating of Gorleben groundwater. Appl Geochem 15:583–597

    Article  Google Scholar 

  • Castro MC, Goblet P (2005) Calculation of ground water ages – A comparative analysis. Ground Water 43(3):368–380

    Article  Google Scholar 

  • Central Geological Survey (2006) Hydrogeology Database. http://hydro.moeacgs.gov.tw. Cited 4 Aug 2006

  • Chen WS, Yang CC, Yang HC, Wu LC, Lin CW, Chang HC, Shih RC, Lin WH, Lee YH, Shih TS, Lu SD (2004) Tectono-geomorphologic studies in the Chiayi-Tainan region in southwestern Taiwan and its implicaitons for active structure. Bulletin of the Central Geological Survey, Taiwan 17:53–77 [in Chinese]

    Google Scholar 

  • Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54(6):993–995

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am. Geophys. Union Trans. 27:526–534

    Google Scholar 

  • Cronin AA, Barth JAC, Elliot T, Kalin RM (2005) Recharge velocity and geochemical evolution for the Permo-Triassic Sherwood Sandstone, Northern Ireland. J Hydrol 315:308–324

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O-18 content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Goldberg ED, Broecker WS, Gross MG, Turekian KK (1971) Marine chemistry. In: Radioactivity in the marine environment. Washington, D.C., National Academy of Sciences, pp 137–146

  • Güler C, Thyne GD (2004) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285:177–198

    Article  Google Scholar 

  • Hiatt EE, Kyser K, Dalrymple RW (2003) Relationships among sedimentology, stratigraphy, and diagenesis in the Proterozoic Thelon Basin, Nunavut, Canada: implications for paleoaquifers and sedimentary-hosted mineral deposits. J Geochem Explor 80:221–240

    Article  Google Scholar 

  • Hidalgo MC, Cruz-Sanjulián J (2001) Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Appl Geochem 16:745–758

    Article  Google Scholar 

  • Ingerson E, Pearson Jr. FJ (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Recent researches in the fields of atmosphere, hydrosphere, and nuclear geochemistry, Sugawara Festival Volume. Maruzen Co., Tokyo, pp 263–283

  • Lu FJ (1990) Blackfoot disease: arsenic or humic acid ? Lancet 336:115–116

    Article  Google Scholar 

  • Lubczynski M, Roy J (2003) Hydrogeological interpretation and potential of the new magnetic resonance sounding (MRS) method. J Hydrol 283:19–40

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2) – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigation Report 99-4259, Denver

  • Peng TR (2001) Study of stable hydrogen and oxygen isotopes for groundwaters in Chianan Plain and Ilan Plain, Taiwan Groundwater Monitoring Network Project. Central Geological Survey, Ministry of Economic Affairs, Taiwan [in Chinese]

    Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. U.S. Geological Survey Water Resources Investigations Report 94-4169, Reston

  • Shtivelman V, Goldman M (2000) Integration of shallow reflection seismics and time domain electromagnetics for detailed study of the coastal aquifer in the Nitzanim area of Israel. J Appl Geophys 44:197–215

    Article  Google Scholar 

  • Sugarman PJ, Miller KG (1997) Correlation of Miocene sequences and hydogeologic units, New Jersey Coastal Plain. Sediment Geol 108:3–18

    Article  Google Scholar 

  • Taiwan Sugar Corporation (1999) Construction of groundwater monitoring well and related hydraulic tests, Taiwan Groundwater Monitoring Network Project. Water Resources Agency, Ministry of Economic Affairs, Taiwan [in Chinese]

  • US Army Corps of Engineers (1999) Occurrence and movement of groundwater. In: Groundwater hydrology. Engineer Manual 1110-2-1421

  • Van der Kemp WJM, Appelo CAJ, Walraevens K (2000) Inverse chemical modeling and radiocarbon dating of palaeogroundwaters- the Tertiary Ledo-Paniselian aquifer in Flanders, Belgium. Water Resour Res 35(3):1277–1287

    Article  Google Scholar 

  • Van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A,Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano JH, Hussain I, Ahmed KM (2003) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour Res 39(5):1140–1155

    Article  Google Scholar 

  • Van Wagoner JC, Mitchum RM, Campion KM, Rahmanian VD (1990) Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. American Association of Petroleum Geologists Methods in Exploration Series 7, Tulsa

  • Water Resources Agency (2006) Inquiry and Supply System of Water Resources Database. http://gweb.wra.gov.tw. Cited 4 Aug 2006

  • Wigley TML, Plummer LN, Pearson FJ (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139

    Article  Google Scholar 

  • Zuber A, Weise SM, OsenbruÈck K, Pajnowska H, Grabczak J (2000) Age and recharge pattern of water in the Oligocene of the Mazovian basin (Poland) as indicated by environmental tracers. J Hydrol 233:174–188

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks go to Mr. L.Y. Fei, who promoted this project. The authors appreciate helpful comments from reviewers and journal editors. This study was supported by research grants from Water Resources Agency and Central Geological Survey, Ministry of Economic Affairs, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsueh-Yu Lu.

Electronic supplementary material

Below is the link to the electronic supplentary material.

Table 1

Water chemistry of groundwaters collected from the North Chianan Plain Groundwater District (NCPGD), Taiwan (XLS 36 kb)

ESM Fig. 1

Location map of the South Chianan Plain Groundwater District (SCPGD), Taiwan, showing sampling sites for stable isotopic analysis (GIF 73 kb)

High-resolution image file (TIF 1323 KB)

Appendix

Results of NETPATH models

Table 5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, HY., Liu, TK., Chen, WF. et al. Use of geochemical modeling to evaluate the hydraulic connection of aquifers: a case study from Chianan Plain, Taiwan. Hydrogeol J 16, 139–154 (2008). https://doi.org/10.1007/s10040-007-0209-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0209-6

Keywords

Navigation