Skip to main content
Log in

Reducing geological uncertainty by conditioning on boreholes: the coupled Markov chain approach

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The CMC (coupled Markov chain) model, which is based on the extension of Markov chains in two-dimensions, is used in the reduction of uncertainty in geological structures when conditioned (i.e., honours the data and their location) on a number of boreholes. The model has been applied to an unconsolidated aquifer deposit located in the central Rhine-Meuse delta (the Gorkum study area) in the Netherlands. A comparison is also made between the CMC and the SIS (sequential indicator simulation) model, which is based on Kriging and co-Kriging theories on the same deposit. The results show the potential applicability of the CMC model in reducing the uncertainty in geological configurations when a sufficient number of boreholes is available. Reproduction of the global geological features requires relatively few boreholes (in this case study, nine boreholes with 30-m spacing over a distance of 240 m). However, reproduction of the proportion of each state requires a relatively large number of boreholes (in this case study 31 boreholes with 8-m spacing over a distance of 240 m). It has been shown that variograms can be deceptive in modeling the spatial pattern and that they reflect only part of the complete spatial structure in the field. The use of transition probabilities via the CMC model provides a better alternative approach, because it uses multiple point information.

Résumé

Le modèle CMC (chaîne de Markov combinée), basé sur l’extension à deux dimensions des chaînes de Markov, est utilisé pour la réduction des incertitudes au niveau des structures géologiques lorsqu’elles sont conditionnées sur un nombre de puits (nécessite des données et leur localisation par exemple). Le modèle a été appliqué à un dépôt aquifère non-consolidé localisé dans le centre du delta Rhin-Meuse (la zone d’étude Gorkum) aux Pays-Bas. Une comparaison est aussi effectuée entre le modèle CMC et le modèle SIS (Simulation par Indicateur Sequentiel) qui est basé sur des théories de Krigeage et de co-Krigeage pour ce même dépôt. Les résultats montrent l’application potentielle du modèle CMC pour la réduction des incertitudes au niveau des configurations géologiques lorsqu’un nombre suffisant de puits est disponible. La reproduction des caractéristiques géologiques globales demande relativement peu de puits (neuf puits distants de 30 m sur une distance de 240 m pour cette étude). Cependant, la reproduction de la proportion de chaque situation demande un nombre relativement important de puits (31 puits distants de 8 m sur une distance de 240 m pour cette étude). Il a été montré que les variogrammes peuvent être décevants pour modéliser les caractéristiques spatiales et qu’ils reflètent uniquement une partie de l’entière structure spatiale du terrain. L’utilisation des probabilités de transition à travers le modèle CMC fournie une approche alternative meilleure car elle est basée sur l’information de multiples points.

Resumen

El modelo CMC (Cadena de Markov Acoplada), el cual se basa en la extensión de cadenas de Markov en dos dimensiones, se ha usado en la reducción de incertidumbre en estructuras geológicas cuando se ha acondicionado en varios sondeos (ie aportado los datos y su localización). El modelo se ha aplicado a un depósito acuífero no consolidado que se localiza en el delta central Rhine-Meuse (el área de estudio Gorkum) en los Países Bajos. También se hace una comparación entre el CMC y el modelo SIS (Simulación Indicadora Secuencial) el cual se basa en las teorías de Kriging y co-Kriging del mismo depósito. Los resultados muestran la aplicabilidad potencial del modelo CMC para reducir la incertidumbre en configuraciones geológicas cuando está disponible un número suficiente de sondeos. La reproducción de las características geológicas globales requiere un número relativamente menor de sondeos (en este estudio de caso nueve sondeos con espaciado de 30 m en una distancia de 240 m). Sin embargo, la reproducción de la proporción de cada estado requiere un número relativamente grande de sondeos (en este estudio de caso 31 sondeos con espaciado de 8m en una distancia de 240 m). Se ha mostrado que los variogramas pueden ser engañosos al modelizar el patrón espacial y que sólo reflejan parte de la estructura espacial completa en el campo. El uso de probabilidades de transición mediante el modelo CMC aporta un mejor enfoque alternativo debido a que usa información de puntos múltiples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bierkens MFP (1994) Complex confining layers: a stochastic analysis of hydraulic properties at various scales, PhD Thesis, Utrecht University, Utrecht, The Netherlands, 263 pp

  • Bierkens MFP (1996) Modelling hydraulic conductivity of complex confining layer at various spatial scales. Water Resour Res 32(8):2369–2382

    Article  Google Scholar 

  • Bierkens MFP, Weerts HJT (1994) Application of the indicator simulation to modeling the lithological properties of a complex confining layer. Geoderma 62(15):265–284

    Article  Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–476

    Article  Google Scholar 

  • Carle SF, Fogg GE (1997) Modelling spatial variability with one-and multi-dimensional continuous Markov chains. Math Geol 29(7):891–918

    Article  Google Scholar 

  • Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Patt Anal Mach Intell 5(1):105–117

    Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York, 646 pp

    Google Scholar 

  • Elfeki AMM (1996) Stochastic characterization of geological heterogeneity and its impact on groundwater contaminant transport. PhD Thesis, TU Delft, The Netherlands, Balkema, Lisse, 301 pp

  • Elfeki AMM (2006a) Prediction of contaminant plumes (shapes, spatial moments and macro-dispersion) in aquifers with insufficient geological information. J Hydraul Res 44(6):841–856

    Article  Google Scholar 

  • Elfeki AMM (2006b) Reducing concentration uncertainty using the coupled Markov chain approach. J Hydrol 317:1–16

    Article  Google Scholar 

  • Elfeki AMM, Dekking M (2001) A Markov chain model for subsurface characterization: theory and applications, mathematical geology. 33(5):569–589

  • Elfeki AM, Dekking FM (2005) Modelling subsurface heterogeneity by coupled Markov chains: directional dependency, Walther’s law and entropy. J Geotech Geol Eng 23:721–756

    Article  Google Scholar 

  • Elfeki AMM, Rajabiani HR (2002) Simulation of plume behavior at the Macrodispersion Experiment (MADE1) site by applying the coupled Markov chain model for site characterization. 14th International Conference Computational Methods in Water Resources “CMWR2002”, Delft, The Netherlands, June 2002, Elsevier, Amsterdam, 655–662 pp

  • Galbraith RF, Walley D (1976) On a two-dimensional binary process. J Appl Prob 13:548–557

    Article  Google Scholar 

  • Gelhar L (1993) Stochastic subsurface hydrology. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Gomez-Hernandez JJ, Srivastava RM (1990) ISIM3D: an ANSI-C three-dimensional multiple indicator conditional simulation program. Comput Geosci 16(4):395–440

    Article  Google Scholar 

  • Keshta NAR (2003) An application of stochastic models in groundwater pollution transport, MSc Thesis, Faculty of Engineering, Mansura University, Mansoura, Egypt, 145 pp

  • Krumbein WC (1967) Fortran computer programme for Markov chain experiments in geology. Computer Contribution 13, Kansas Geological Survey, Lawrence, KS, USA

  • Li W, Zhang C, Burt JE, Zhu A-X, Feyen J (2004) Two-dimensional Markov chain simulation of soil type spatial distribution. Soil Sci Soc Am J 68(5):1479–1490

    Article  Google Scholar 

  • Lin C, Harbaugh JW (1984) Graphical display of two and three-dimensional Markov computer models in geology. Van Nostrand, New York

    Google Scholar 

  • Park E, Elfeki AMM, Dekking FM (2003) Characterization of subsurface heterogeneity: integration of soft and hard information using multi-dimensional Coupled Markov chain approach. In: Tsang C-F, Apps JA (eds) Underground injection science and technology symposium. Berkeley, CA, October 2003, 49 pp

  • Proce CJ, Ritzi RW, Dominic DF, Dai Z (2004) Modelling multiscale heterogeneity and aquifer interconnectivity. Groundwater 42(5):658–670

    Google Scholar 

  • Ritzi RW, Dai Z, Dominic DF, Rubin YN (2004) Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture. Water Resour Res 40:W03513, DOI 10.1029/2003WR002420

  • Weerts HJT (1996) Complex confining layers: architecture and hydraulic properties of Holocene and late Weichselian deposits in the fluvial Rhine-Meuse delta, The Netherlands, PhD Thesis, Utrecht University, The Netherlands, 189 pp

  • Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence of stratigraphic framework. J Hydrol 226:48–65

    Article  Google Scholar 

  • Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Article  Google Scholar 

  • Zhang C, Li W (2005) Markov chain modeling of mutinomial land-cover classes. GISci Remote Sens 42(1):1–18

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank the two anonymous referees for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amro M. M. Elfeki.

Additional information

Amro M. M. Elfeki on leave from Department of Irrigation and Hydraulics, Faculty of Engineering, Mansoura University, Mansoura, Egypt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elfeki, A.M.M., Dekking, F.M. Reducing geological uncertainty by conditioning on boreholes: the coupled Markov chain approach. Hydrogeol J 15, 1439–1455 (2007). https://doi.org/10.1007/s10040-007-0193-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0193-x

Keywords

Navigation