Hydrogeology Journal

, Volume 15, Issue 7, pp 1321–1339 | Cite as

Origin of halite brine in the Onondaga Trough near Syracuse, New York State, USA: modeling geochemistry and variable-density flow

  • Richard M. Yager
  • William M. Kappel
  • L. Niel Plummer


Halite brine (saturation ranging from 45 to 80%) lies within glacial sediments that fill the Onondaga Trough, a bedrock valley deepened by Pleistocene glaciation near Syracuse, New York State, USA. The most concentrated brine occupies the northern end of the trough, about 10 km downgradient of the northern limit of halite beds in the Silurian Salina Group, the assumed source of salt. The chemical composition of the brine and its radiocarbon age suggest that the brine originally formed about 16,700  years ago through dissolution of halite by glacial melt water and later mixed with saline bedrock water. Two hypotheses regarding the formation of the brine pool were tested through variable-density flow simulations using SEAWAT. Simulation results supported the first hypothesis that the brine pool was derived from a source in the glacial sediments and then migrated to its current position, where it has persisted for over 16,000  years. A second hypothesis that the brine pool formed through steady accumulation of brine from upward flow of a source in the underlying bedrock was not supported by simulation results, because the simulated age distribution was much younger than the age estimated from geochemical modeling.


Brine Simulation Geochemistry Density-dependent flow 


Des saumures riches en halite (saturation comprise entre 45 et 80%) se situent dans les sédiments glaciaires qui remplissent le Bassin d’Onondaga Trough, vallée rocheuse approfondie par la glaciation pléistocène à proximité de Syracuse (Etat de New York, Etats-Unis). Les saumures les plus concentrées occupent l’extrémité nord du bassin, à environ 10 km à l’aval hydraulique de la limite nord des lits de halite du Silurian Salina Group, la source supposée du sel. La composition chimique de la saumure et son âge radiocarbone suggère qu’elle s’est initialement constituée il y a environ 16700  ans, par dissolution de la halite par l’eau de fonte glaciaire, et s’est ensuite mélangée avec l’eau de la roche-mère saline. Deux hypothèses sur la formation d’une ressource sursalée ont été testées par simulation d’écoulements à densités variables, sous SEAWAT. Les résultats de la simulation confirment la première hypothèse : la ressource sursalée prend son origine dans les sédiments glaciaires et a migré vers la position actuelle, où elle se maintient depuis plus de 16000  ans. La seconde hypothèse était que la ressource sursalée s’était formé par accumulation de saumure sous un flux ascendant issu de la roche-mère sous-jacente; elle n’a pas été validée par les résultats de la simulation, parce que les âges simulés apparaissaient bien inférieurs aux âges estimés à partir des modélisations géochimiques.


Una salmuera de halita (con una saturación que oscila entre el 45 y el 80%) se encuentra en sedimentos glaciares que rellenan el Onondaga Trough, un valle rocoso excavado por la glaciación Pleistocena cerca de Siracusa, en el estado de Nueva York, USA. La salmuera más concentrada ocupa el extremo norte del valle, a 10 km aproximadamente aguas abajo del límite norte de los estratos de halita en el Grupo Silúrico Salina, la supuesta fuente de sal. La composición química de la salmuera y su edad medida por radiocarbono sugiere que se formó originalmente hace aproximadamente 16,700 años a partir de la disolución de halita por el deshielo de agua glacial y su posterior mezcla con agua de los cuerpos salinos. Se han considerado dos hipótesis observando la formación de la salina mediante simulaciones de flujo de densidad variable usando SEAWAT. Los resultados de la simulación confirmaron la primera hipótesis, consistente en que la salina derivó de una fuente en los sedimentos glaciares y entonces migró hasta su posición actual, donde ha permanecido durante más de 16,000 años. Una segunda hipótesis consistente en la salina se formó mediante la acumulación estacionaria de salmuera desde un flujo aguas arriba de una fuente en el estrato inferior no se vio confirmada por los resultados de la simulación, porque la distribución de edad simulada fue mucho más joven que la edad estimada de la modelación geoquímica.



We thank Chris Langevin of the US Geological Survey (Fort Lauderdale) for his insights and guidance in the application of SEAWAT during model development for this study. Guy Swenson of O’Brien and Gere Engineers provided hydrogeological data used in designing and calibrating the groundwater flow models. Several researchers provided chemical analyses and interpretations from the US Geological Survey: Blair Jones, Kathryn Conko and Tyler Coplen (Reston), and Thomas Bullen and John Fitzpatrick (Menlo Park) and from Syracuse University: Donald Siegel and graduate students Amanda Bauldauf Slavic (2003) and Edward Epp (2005). Funding was provided by the US Environmental Protection Agency through the Onondaga Lake Partnership. We would also like to thank the anonymous reviewers for their helpful comments in the review process.


  1. Anderson NL, Hinds RC (1997) Glacial loading and unloading: a possible cause of rock salt dissolution in the Western Canada Basin. Carbon Evapor 12:43–52CrossRefGoogle Scholar
  2. Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42(5), W05421. DOI  10.1029/2005WR004480
  3. Boulton GS, Caban PE, van Gijssel K (1995) Groundwater flow beneath ice sheets: part I-large scale patterns. Quat Sci Rev 114:545–562Google Scholar
  4. Brasier FM, Kobelski BJ (1996) Injection of industrial wastes in the United States. In: Apps JA, Tsang CF (eds) Deep injection disposal of hazardous and industrial waste. Academic Press, San Diego, CA, pp 1–8Google Scholar
  5. Bredehoeft JD, Blyth CR, White WA, Maxey GB (1963) Possible mechanism for concentration of brines in subsurface formations. Am Assoc Petrol Geol Bull 47:257–269Google Scholar
  6. Burnett AW, Mullins HT, Patterson WP (2004) Relationship between atmospheric circulation and winter precipitation δ18O in central New York State. Geophys Res Lett 31:L22209CrossRefGoogle Scholar
  7. Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklahoma Geol Surv Circ 79:60–77Google Scholar
  8. Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:137–170CrossRefGoogle Scholar
  9. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, USAGoogle Scholar
  10. Dausman A, Langevin CD (2005) Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida. US Geol Surv Sci Invest Rep 2004–5256Google Scholar
  11. Deines P, Langmuir D, Harmon RS (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38:1147–1164CrossRefGoogle Scholar
  12. Dutton AR (1989) Hydrogeochemical processes involved in salt-dissolution zones, Texas Panhandle, USA. Hydrol Process 3:75–89CrossRefGoogle Scholar
  13. Effler SW (ed) (1996) Limnological and engineering analysis of a polluted urban lake. Springer, New YorkGoogle Scholar
  14. Effler SW, Perkins MG (1987) Failure of spring turnover to occur in Onondaga Lake, NY, USA. Water Air Soil Poll 34:285–291CrossRefGoogle Scholar
  15. Effler SW, Doerr SM, Brooks CM, Rowell HC (1990) Chloride in the pore water and water column of Onondaga Lake, NY, USA. Water Air Soil Poll 51:315–326Google Scholar
  16. Frape SK, Blyth A, Blomqvist R, McNutt RH, Gascoyne M (2004) Deep fluids in the continents II: crystaline rocks. In: Drever JI (ed) Surface and ground water, weathering and soils, treatise on geochemistry, vol 5, chapter 17. Elsevier, New York, pp 541–580Google Scholar
  17. Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol J 13:436–450CrossRefGoogle Scholar
  18. Graf DL, Meents WF, Friedman I, Shimp NF (1966) Origin of saline formation waters, III: calcium chloride waters. Illinois Geol Surv Circ 397Google Scholar
  19. Grasby SE, Chen Z (2005) Subglacial recharge into the Western Canada Sedimentary Basin: impact of Pleistocene glaciation on basin hydrodynamics. Geol Soc Am Bull 117:500–514Google Scholar
  20. Guo W, Langevin CD (2002) Users guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geological Survey Techniques of Water-Resources Investigations, book 6, chapter A7, US Geological Survey, Reston, VAGoogle Scholar
  21. Hand BM (1978) Syracuse melt-water channels. In: New York State Geol Assoc Guidebook, 50th Annual Meeting, 23–24 September 1978, Syracuse University, NY, USA, pp 286–314Google Scholar
  22. Hanor JS (1983) Fifty years of development of thought on the origin and evolution of subsurface sedimentary brines. In: Boardman SJ (ed) Evolution and the earth sciences advances in the past half-century. Kendall/Hunt, Dubuque, IW, USA, pp 99–111Google Scholar
  23. Hanor JS (1987) History of thought on the origin of subsurface sedimentary brines. In: The history of hydrology: history of geophysics, vol 3. Am Geophys Union, Washington, DC, pp 81–91Google Scholar
  24. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model-User guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92Google Scholar
  25. Herzog HJ, Drake EM (1998) CO2 capture, reuse, and sequestration technologies for mitigating global climate change. In: Proceedings of the 23rd International Technology Conference on Coal Utilization and Fuel Systems. Clearwater, FL, March 1998, pp 615–626Google Scholar
  26. Horita J, Wesolowski D, Cole D (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: I. vapor-liquid water equilibration of single salt solutions from 50 to 100°C. Geochim Cosmochim Acta 57:2797–2817CrossRefGoogle Scholar
  27. Johannsen K, Kinzelbach W, Oswald S, Wittum G (2002) The saltpool benchmark problem-numerical simulation of saltwater upconing in a porous medium. Adv Water Resour 25:335–348CrossRefGoogle Scholar
  28. Johnson KS (1981) Dissolution of salt on the east flank of the Permian Basin in the southwestern USA. J Hydrol 54:75–93CrossRefGoogle Scholar
  29. Jones BF, Anderholm SK (1996) Some geochemical considerations of brines associated with bedded salt repositories. In: Bottrel SH (ed) Fourth International Symposium on the Geochemistry of the Earth’s Surface, Ilkley, Yorkshire, July 1996, International Assoc. of Geochemistry and Cosmochemistry, Pinawa, MB, Canada, pp 343–353Google Scholar
  30. Kappel WM (2000) Salt production in Syracuse, New York (“The Salt City”) and the hydrogeology of the Onondaga Creek Valley. US Geological Survey Fact Sheet FS 139–00, US Geological Survey, Reston, VAGoogle Scholar
  31. Kappel WM, Miller TS (2003) Hydrogeology of the Tully Trough, southern Onondaga County and northern Cortland County, New York. US Geol Surv Water-Resour Invest Rep 03–4112Google Scholar
  32. Kappel WM, Miller TS (2005) Hydrogeology of the valley-fill aquifer in the Onondaga Trough, Onondaga County, New York. US Geol Surv Sci Invest Rep 2005–5007Google Scholar
  33. Kappel WM, Sherwood DA, Johnston WH (1996) Hydrogeology of the Tully Valley and characterization of mudboil activity, Onondaga County, New York. US Geol Surv Sci Invest Rep 96–4043Google Scholar
  34. Kharaka YK, Hanor JS (2004) Deep fluids in continents: I. sedimentary basins. In: Drever JI (ed) Surface and ground water, weathering and soils, treatise on geochemistry. vol 5, chapter 16, Elsevier, New York, pp 499–540Google Scholar
  35. Kurlansky M (2002) Salt: a world history. Penguin, New YorkGoogle Scholar
  36. Lahm TD, Bair ES (2000) Regional depressurization and its impact on the sustainability of freshwater resources in an extensive mid-continent variable-density aquifer. Water Resour Res 36:3167–3178CrossRefGoogle Scholar
  37. Lahm TD, Bair ES, VanderKwaak J (1998) Role of salinity-derived variable-density flow in the displacement of brine from a shallow, regionally extensive aquifer. Water Resour Res 34:1469–1480CrossRefGoogle Scholar
  38. Lambert SJ (1978) Geochemistry of Delaware Basin ground waters. In: Austin GS (ed) Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas. New Mexico Bur Mines Min Resour Circ 159:33–38Google Scholar
  39. Langevin CD, Guo W (2006) MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport. Ground Water 44:339–351CrossRefGoogle Scholar
  40. Langevin CD, Shoemaker WB, Guo W (2003) MODFLOW-2000, the U.S. Geological Survey modular ground-water model-Documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS transport process (IMT). US Geol Surv Open-File Rep 03–426Google Scholar
  41. Mason JL, Kipp KL (1997) Hydrology of the Bonneville Salt Flats, northwestern Utah, and the simulation of ground-water flow and solute transport in the shallow-brine aquifer. US Geol Surv Prof Pap 1585, US Geological Survey, Reston, VAGoogle Scholar
  42. McIntosh JC, Walter LM (2006) Paleowaters in Silurian-Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochim Cosmochim Acta 70:2454–2479Google Scholar
  43. Mullins HT, Hinchey EJ, Wellner RW, Stephens DB, Anderson WT, Dwyer TR, Hine AC (1996) Seismic stratigraphy of the Finger Lakes: a continental record of Heinrich event H-1 and Laurentide ice sheet instability. Geol Soc Am Spec Pap 311Google Scholar
  44. New York State Department of Environmental Conservation (NYSDEC) (1988) Generic environmental impact statement on the oil, gas and solution mining regulatory program, vol II, NYSDEC, Albany, NY, USAGoogle Scholar
  45. Novak SA, Eckstein Y (1988) Hydrochemical characterization of brines and identification of brine contamination in aquifers. Ground Water 26:317–324CrossRefGoogle Scholar
  46. Oi T, Nomura M, Musashi M, Ossaka T, Okamoto M, Kakihana H (1989) Boron isotopic compositions of some boron minerals. Geochim Cosmochim Acta 53:3189–3197CrossRefGoogle Scholar
  47. Onondaga County Department of Water Environment Protection (2002) Onondaga Lake ambient monitoring program executive summary, 2002. Onondaga County Department of Water Environment Protection, Syracuse, NY, USAGoogle Scholar
  48. Ophori DU (1998) Flow of groundwater with variable density and viscosity, Atikokan Research Area, Canada. Hydrogeol J 6:193–203CrossRefGoogle Scholar
  49. Oswald SE, Kinzelbach W (2004) Three-dimensional physical benchmark experiments to test variable-density flow models. J Hydrol 290:22–42CrossRefGoogle Scholar
  50. Phalen WC (1919) Salt resources of the United States. US Geol Surv Bull 669, US Geological Survey, Reston, VAGoogle Scholar
  51. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH Version 2.0. US Geol Surv Water Resour Invest Rep 94–4169Google Scholar
  52. Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Sci Invest Rep 98–4080, p 116Google Scholar
  53. Pohlmann KF, Hassan AE, Chapman JB (2002) Modeling density-driven flow and radionuclide transport at an underground nuclear test: uncertainty analysis and effect of parameter correlation. Water Resour Res 38:1059–1076CrossRefGoogle Scholar
  54. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference ground-ware flow model. US Geol Surv Open-File Rep 94–464Google Scholar
  55. Ranganathan V, Hanor JS (1988) Density-driven groundwater flow near salt domes. Chem Geol 74:173–188CrossRefGoogle Scholar
  56. Rickard LV (1969) Stratigraphy of the upper Silurian Salina Group New York, Pennsylvania, Ohio, Ontario. Map and Chart Series No. 12. New York State Museum and Science Service, Albany, New YorkGoogle Scholar
  57. Spivack AJ, Palmer MR, Edmond JM (1987) The sedimentary cycle of the boron isotopes. Geochim Cosmochim Acta 51:1939–1949CrossRefGoogle Scholar
  58. Taube H (1954) Use of oxygen isotope effects in the study of hydration of ions. J Chem Phys 58:523–528CrossRefGoogle Scholar
  59. Yager RM (1996) Simulated three-dimensional ground-water flow in the Lockport Group, a fractured dolomite aquifer near Niagara Falls, New York. US Geol Surv Water Suppl Pap 2487Google Scholar
  60. Yager RM, Miller TS, Kappel WM (2001) Simulated effects of 1994 salt-mine collapse on ground-water flow and land subsidence in a glacial aquifer system, Livingston County, New York. US Geol Surv Prof Pap 1611Google Scholar
  61. Yager RM, Kappel WM, Plummer LN (2007) Halite brine in the Onondaga Trough near Syracuse NY: characterization and simulation of variable-density flow. US Geol Surv Sci Invest Rep 2007–5058Google Scholar
  62. Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New YorkGoogle Scholar
  63. Zheng C, Wang PP (1998) MT3DMS: a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MSGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Richard M. Yager
    • 1
  • William M. Kappel
    • 1
  • L. Niel Plummer
    • 1
  1. 1.United States Geological SurveyIthacaUSA

Personalised recommendations