Hydrogeology Journal

, Volume 15, Issue 5, pp 915–927 | Cite as

Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA

  • Christopher S. Heppner
  • John R. Nimmo
  • Gordon J. Folmar
  • William J. Gburek
  • Dennis W. Risser
Report

Abstract

Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium.

Keywords

Groundwater recharge Fractured rocks Unsaturated zone Lysimeters Water-table fluctuations 

Résumé

Les analyses des percolats de lysimètres et d’hydrogrammes de puits ont été combinées pour évaluer la recharge du Site de Recharge de Masser (Pennsylvanie centrale, USA). Dans les régions humides, la recharge d’un aquifère à travers un aquifère de roche fracturée libre et de faible porosité peut engendrer des fluctuations piézométriques de grandes amplitudes sur de courtes échelles de temps. Les caractéristiques hydrauliques non saturées du milieu poreux de la subsurface contrôlent l’amplitude et la durée de ces fluctuations. Les données provenant de plusieurs ensembles de lysimètres sur le site montrent un système de percolation très saisonnier et une variabilité due aux facteurs d’installation et à l’hétérogénéité des propriétés hydrauliques. L’analyse d’événements individuels des données d’hydrogrammes de puits révèle les influences primaires sur la réponse de la nappe, à savoir la profondeur et l’intensité des pluies et la profondeur initiale de la nappe. La variabilité spatiale et temporelle de la réponse des puits est également évidente. Une nouvelle approche pour calculer la recharge à partir d’enregistrements continus des niveaux piézomètriques en utilisant une courbe principale de décrue (MRC en anglais) est ici démontrée. La recharge estimée par MRC en supposant une porosité efficace constante est saisonnière à un degré moindre que la recharge résultant de l’analyse par lysimètres. La réconciliation partielle des deux estimations de recharge est atteinte en considérant un modèle conceptuel des processus d’écoulement dans le milieu poreux fracturé sous-jacent extrêmement hétérogène.

Resumen

Se combinaron análisis de infiltración con lisímetro y de hidrograma de pozo, para evaluar la recarga para el Sitio de Recarga Masser (Pennsylvania central, EE.UU.). En regiones húmedas la recarga acuífera a través de un acuífero de roca fracturada, libre y de baja-porosidad, puede causar fluctuaciones gran magnitud del nivel freático, en periodos cortos de tiempo. Las características hidráulicas del medio poroso subsuperficial no saturado, controlan la magnitud y el tiempo de ocurrencia de estas fluctuaciones. Los datos de los grupos múltiples de lisímetros en el sitio, muestran un modelo muy estacional de infiltración y muestran variabilidad debido tanto a factores de instalación, como a la heterogeneidad de las propiedades hidráulicas. El análisis de eventos individuales de los datos del hidrograma de pozo, revelan influencias primarias en la reacción del nivel freático, a saber, cantidad de lluvia, intensidad de lluvia, y la profundidad inicial del nivel freático. La variabilidad espacial y estacional en la reacción del pozo, también es evidente. Se demuestra un nuevo acercamiento para calcular la recarga, a partir de registros continuos de elevación del nivel freático, usando una curva patrón de declinación (CPD). La recarga estimada por la aproximación de CPD, es estacional, cuando se asume un rendimiento específico constante, a un grado menor que la estimación de la recarga resultante del análisis del lisímetro. La conciliación parcial entre las dos evaluaciones de la recarga, se logra considerando un modelo conceptual de procesos de flujo, en el medio poroso fracturado muy heterogéneo que está subyacente.

References

  1. Childs EC (1960) The nonsteady state of the water table in drained land. J Geophys Res 63:780–782Google Scholar
  2. Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41, W01008. DOI 10.1029/2004WR003077 CrossRefGoogle Scholar
  3. Faybishenko B (2004) Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives. Rev Geophys 42, RG2003. DOI 10.1029/2003RG000125 CrossRefGoogle Scholar
  4. Fayer MJ, Hillel D (1986) Air encapsulation. I. Measurement in a field soil. Soil Sci Soc Am J 50:568–572CrossRefGoogle Scholar
  5. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, pp 604Google Scholar
  6. Gburek WJ, Folmar GF (1999) A ground water recharge field study: site characterization and initial results. Hydrol Process 13:2813–2831CrossRefGoogle Scholar
  7. Germann PF, Beven K (1985) Kinematic wave approximation to infiltration into soils with sorbing macropores. Water Resour Res 21:990–996Google Scholar
  8. Haines BL, Waide JB, Todd RL (1982) Soil solution nutrient concentrations sampled with tension and zero-tension lysimeters: report of discrepancies. Soil Sci Soc Am J 46:658–661CrossRefGoogle Scholar
  9. Hantush MS (1967) Growth and decay of groundwater-mounds in response to uniform percolation. Water Resour Res 3:227–234Google Scholar
  10. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:1431–2174. DOI 10.1007/s10040-001-0178-0 CrossRefGoogle Scholar
  11. Heliotis FD, DeWitt CB (1987) Rapid water table responses to rainfall in a northern peatland ecosystem. Water Resour Bull 23:1011–1016Google Scholar
  12. Heppner CS, Nimmo JR (2005) A computer program for predicting recharge with a master recession curve. US Geol Surv Sci Invest Rep 2005–5172, pp 8Google Scholar
  13. Liu HH, Doughty C, Bodvarsson GS (1998) An active fracture model for unsaturated flow and transport in fractured rocks. Water Resour Res 34:2633–2646CrossRefGoogle Scholar
  14. Liu HH, Haukwa CB, Ahlers CF, Bodvarsson GS, Flint AL, Guertal WB (2003) Modeling flow and transport in unsaturated fractured rock: an evaluation of the continuum approach. J Contam Hydrol 62–63:173–188CrossRefGoogle Scholar
  15. Marechal JC, Dewandel B, Subrahmanyam K, Torri R (2003) Specific methods for the evaluation of hydraulic properties in fractured hard-rock aquifers. Curr Sci 85:511–516Google Scholar
  16. Nachabe MH (2002) Analytical expressions for transient specific yield and shallow water table drainage. Water Resour Res 38(10):1193. DOI 10.1029/2001WR001071 CrossRefGoogle Scholar
  17. Nimmo JR, Healy RW, Stonestrom DA (2005) Aquifer recharge. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological science, vol 4. Wiley, Chichester, UK, pp 2229–2246Google Scholar
  18. Peters RR, Klavetter EA (1988) A continuum model for water movement in an unsaturated fractured rock mass. Water Resour Res 24:416–430Google Scholar
  19. Rasmussen TC, Baldwin RH Jr, Dowd JF, Williams AG (2000) Tracer vs. pressure wave velocities through unsaturated saprolite. Soil Sci Soc Am J 64:75–85CrossRefGoogle Scholar
  20. Risser DW, Gburek WJ, Folmar GJ (2005) Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the eastern United States. US Geol Surv Sci Invest Rep 2005–5038, pp 31Google Scholar
  21. Robison WL, Stone EL, Hamilton TF (2004) Large plate lysimeter leachate collection efficiency for water being transported from soil to ground water. Soil Sci 169(11). DOI 10.1097/01.ss.0000148736.81207.1a
  22. Rorabaugh MI (1960) Use of water levels in estimating aquifer constants in a finite aquifer. Int Assoc Sci Hydrol Commmission Subterranean Waters Publ 52:314–323Google Scholar
  23. Rutledge AT (1993) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records. US Geol Surv Water-Resour Invest Rep 93–4121Google Scholar
  24. Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow data: update. US Geol Surv Water-Resour Invest Rep 98–4148, pp 43Google Scholar
  25. Rutledge AT (2005) Basic concepts for the linear model of ground water level recession. Ground Water 44(3)485. DOI 10.1111/j.1745-6584.2005.00157.x
  26. Sophocleous MA (1985) The role of specific yield in ground-water recharge estimations: a numerical study. Ground Water 23:52–58CrossRefGoogle Scholar
  27. Sophocleous MA (1991) Combining the soilwater balance and water-level fluctuation methods to estimate natural ground-water recharge: practical aspects. J Hydrol 124:229–241CrossRefGoogle Scholar
  28. Su GW, Geller JT, Pruess K, Hunt J (2000) Overview of preferential flow in unsaturated fractures. In: Faybishenko B, Witherspoon PA, Gale J (eds) Dynamics of fluids in fractured rock. Am Geophys Union Monogr 122:73–98Google Scholar
  29. Tokunaga TK, Wan J (1997) Water film flow along fracture surfaces of porous rock. Water Resour Res 33:1287–1295CrossRefGoogle Scholar
  30. Wang JSY, Narasimhan TN (1985) Hydrologic mechanisms governing fluid flow in a partially saturated, fractured, porous medium. Water Resour Res 21:1861–1874CrossRefGoogle Scholar
  31. Weeks EP (2002) The Lisse effect revisited. Ground Water 40:652–656CrossRefGoogle Scholar
  32. Wuest SB (2005) Bias in ponded infiltration estimates due to sample volume and shape. Vadose Zone J 4:1183–1190. DOI 10.2136/vzj2004.0184 CrossRefGoogle Scholar
  33. Zhu Y, Fox RH, Toth JD (2002) Leachate collection efficiency of zero-tension pan and passive capillary fiberglass wick lysimeters. Soil Sci Soc Am J 66:37–43CrossRefGoogle Scholar
  34. Zhu Y, Fox RH, Toth JD (2003) Tillage effects on nitrate leaching measured by pan and wick lysimeters. Soil Sci Soc Am J 67:1517–1523CrossRefGoogle Scholar
  35. Zuber A, Motyka J (1998) Hydraulic parameters and solute velocities in triple-porosity karstic-fissured-porous carbonate aquifers: case studies in southern Poland. Environ Geol 34:243–250CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Christopher S. Heppner
    • 1
    • 2
  • John R. Nimmo
    • 1
  • Gordon J. Folmar
    • 3
  • William J. Gburek
    • 3
  • Dennis W. Risser
    • 4
  1. 1.US Geological SurveyMenlo ParkUSA
  2. 2.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  3. 3.US Department of Agriculture-Agricultural Research ServiceUniversity ParkUSA
  4. 4.US Geological SurveyNew CumberlandUSA

Personalised recommendations