Hydrogeology Journal

, Volume 15, Issue 4, pp 633–643 | Cite as

Effects of intraborehole flow on groundwater age distribution

Paper

Abstract

Environmental tracers are used to estimate groundwater ages and travel times, but the strongly heterogeneous nature of many subsurface environments can cause mixing between waters of highly disparate ages, adding additional complexity to the age-estimation process. Mixing may be exacerbated by the presence of wells because long open intervals or long screens with openings at multiple depths can transport water and solutes rapidly over a large vertical distance. The effect of intraborehole flow on groundwater age was examined numerically using direct age transport simulation coupled with the Multi-Node Well Package of MODFLOW. Ages in a homogeneous, anisotropic aquifer reached a predevelopment steady state possessing strong depth dependence. A nonpumping multi-node well was then introduced in one of three locations within the system. In all three cases, vertical transport along the well resulted in substantial changes in age distributions within the system. After a pumping well was added near the nonpumping multi-node well, ages were further perturbed by a flow reversal in the nonpumping multi-node well. Results indicated that intraborehole flow can substantially alter groundwater ages, but the effects are highly dependent on local or regional flow conditions and may change with time.

Keywords

Groundwater age Numerical modeling Solute transport Groundwater flow 

Résumé

Les traceurs environnementaux sont habituellement utilisés pour estimer les âges des eaux souterraines et les temps de résidence. Cependant, la nature hautement hétérogène de nombreux environnements souterrains peut engendrer des mélanges entre des eaux d’âges très disparates, complexifiant par-là même le processus d’estimation des âges. La présence de puits peut exacerber le phénomène de mélange : de longues sections en trou nu ou crépinées exploitant plusieurs niveaux productifs distincts peuvent transporter rapidement l’eau et les solutés sur une grande distance verticale. Les conséquences de flux intra-forages sur les ages des eaux souterraines ont été étudiées numériquement en couplant les simulations directes de temps de résidence avec le “Multi-Node Well Package” de MODFLOW. Dans un aquifère homogène et anisotrope, les âges ont atteint un régime permanent étroitement dépendant de la profondeur. Un puits multinœud au repos a ensuite été inséré dans l’une des trois zones du système. Dans les trois cas, les transports verticaux par le puits ont entraîné des modifications substantielles des distributions des âges dans le système. Enfin, après ajout d’un puits en pompage à proximité du puits au repos, les âges ont été perturbé davantage, par une inversion du flux dans le puits au repos. Les résultats ont montré que les flux intra-forages peuvent modifier substantiellement les âges des eaux souterraines, mais leurs effets sont hautement dépendants des conditions locales ou régionales d’écoulement, et peuvent de surcroît changer dans le temps.

Resumen

Los trazadores ambientales pueden usarse para estimar el tiempo de viaje y las edades del agua subterránea pero la naturaleza fuertemente heterogénea de muchos ambientes subsuperficiales puede causar mezcla entre aguas de edades altamente dispares, añadiendo complejidad adicional al proceso de estimación de edades. La mezcla puede exacerbarse por la presencia de pozos debido a que intervalos largos abiertos o mallas largas con aberturas a profundidades múltiples pueden transportar agua y solutos rápidamente a lo largo de grandes distancias verticales. Se examinó numéricamente el efecto de flujo entre pozos en la edad del agua subterránea usando la simulación de transporte de edades directa acompañada con el Paquete de Pozos Multi-Nodo de MODFLOW. Las edades en un acuífero anisotrópico y homogéneo alcanzaron un régimen de predesarrollo permanente con fuerte dependencia de la profundidad. Luego se introdujo un sistema de pozos multi-nodo sin bombeo en uno de tres lugares dentro del sistema. En todos los tres casos, el transporte vertical a lo largo del pozo dio por resultado cambios substanciales en las distribuciones de edad dentro del sistema. Después de que se añadió un pozo de bombeo cerca del pozo multi-nodo sin bombeo se perturbaron las edades aún más por inversión del flujo en el pozo multi-nodo sin bombeo. Los resultados indican que el flujo entre los pozos puede alterar substancialmente las edades del agua subterránea pero que los efectos son altamente dependientes en las condiciones de flujo regional o local y pueden cambiar con el tiempo.

References

  1. Becker MW, Shapiro AM (2001) Tracer transport in fractured crystalline rock: evidence of nondiffusive breakthrough tailing. Water Resour Res 36:1677–1686CrossRefGoogle Scholar
  2. Berkowitz B, Scher H, Silliman SE (2000) Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res 36:149–158CrossRefGoogle Scholar
  3. Bethke CM, Johnson TM (2002) Paradox of groundwater age: correction. Geology 30:385–388CrossRefGoogle Scholar
  4. Burnett RD, Frind EO (1987) Simulation of contaminant transport in three dimensions. 2. Dimensionality effects. Water Resour Res 23:695–705Google Scholar
  5. Busenberg E, Plummer LN (1992) Use of Chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system in Central Oklahoma. Water Resour Res 28:2257–2283CrossRefGoogle Scholar
  6. Castro MC, Jambon A, de Marsily G, Schlosser P (1998) Noble gases as natural tracers of water circulation in the Paris Basin. 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour Res 34:2467–2483CrossRefGoogle Scholar
  7. Church PE, Granato GE (1996) Bias in ground-water data caused by well-bore flow in long-screen wells. Ground Water 34:262–273CrossRefGoogle Scholar
  8. Clark BR, Landon MK, Kauffman LJ, Hornberger GZ (2006) Simulation of solute movement through wellbores to characterize public supply well contaminant vulnerability in the High Plains Aquifer, York, Nebraska. Paper presented at the MODFLOW and More Conference, Golden, CO, 21–24 May 2006Google Scholar
  9. Di Federico V, Neuman SP, Tartakovsky DM (1999) Anisotropy, lacunarity, and upscaled conductivity and its autocovariance in multiscale random fields with truncated power variograms. Water Resour Res 35:2891–2908CrossRefGoogle Scholar
  10. Gass TE, Lehr JH, Heiss HW Jr (1977) Impact of abandoned wells on groundwater. EPA-600/3-77-095. US Environmental Protection Agency, Washington, DCGoogle Scholar
  11. Gelhar LW, Axness C (1983) Three-dimensional stochastic-analysis of macrodispersion in aquifers. Water Resour Res 19:161–180Google Scholar
  12. Goltz MN, Roberts PY (1987) Using the method of moments to analyze three-dimensional diffusion-limited solute transport from temporal and spatial perspectives. Water Resour Res 23:1575–1585CrossRefGoogle Scholar
  13. Goode DJ (1999) Age, double porosity, and simple reaction modifications for the MOC3D ground-water transport model. US Geol Surv Water-Resour Invest Rep 99–4041, USGS, Reston, VAGoogle Scholar
  14. Government of Alberta (2001) Plugging abandoned wells. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/wwg414. Cited 29 November 2006
  15. Guswa AJ, Freyberg DL (2002) On using the equivalent conductivity to characterize solute spreading in environments with low-permeability lenses. Water Resour Res 38:1132, DOI 10.1029/2001WR000528. Cited 29 November 2006CrossRefGoogle Scholar
  16. Haggerty R, Gorelick SM (1995) Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour Res 31:2383–2400CrossRefGoogle Scholar
  17. Haggerty R, McKenna SA, Meigs LC (2000) On the late-time behavior of tracer test breakthrough curves. Water Resourc Res 36:3467–3479CrossRefGoogle Scholar
  18. Halford KJ, Hanson RT (2002) MODFLOW-2000, User guide for the drawdown-limited, Multi-Node Well Package for the US Geological Survey’s modular ground-water model, Versions MODFLOW-96 and MODFLOW-2000, US Geol Surv Open-File Rep 02–293Google Scholar
  19. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular ground-water model—user guide to modularization concepts and the ground-water flow process, US Geol Surv Open-File Rep 00–92Google Scholar
  20. Heberton CI, Russell TF, Konikow LF, Hornberger GZ (2000) A three-dimensional finite-volume Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for solute-transport modeling, US Geol Surv Water-Resour Invest Rep 00–4087Google Scholar
  21. Kipp KL Jr, Konikow LF, Hornberger GZ (1998) An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model, US Geol Surv Water-Resour Invest Rep 98–4234Google Scholar
  22. Konikow LF, Goode DJ, Hornberger GZ (1996) A three-dimensional method-of-characteristics solute-transport model (MOC3D), US Geol Surv Water-Resour Invest Rep 96–4267Google Scholar
  23. Konikow LF, Hornberger GZ (2003) Use of boundary fluxes when simulating solute transport with the MODFLOW Ground-Water Transport Process, US Geol Surv Open-File Rep 03–303Google Scholar
  24. Konikow LF, Hornberger GZ (2006a) Use of the Multi-Node Well Package when simulating solute transport with the MODFLOW ground-water transport process, US Geol Surv Tech Methods 6–A15Google Scholar
  25. Konikow LF, Hornberger GZ (2006b) Modeling effects of multinode wells on solute transport. Ground Water 44(5):648–660Google Scholar
  26. LaBolle EM, Fogg GE (2001) Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp Porous Media 42:155–179CrossRefGoogle Scholar
  27. Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31:1871–1882CrossRefGoogle Scholar
  28. Li L, Barry DA, Culligan-Hensley PJ, Bajracharya K (1994) Mass transfer in soils with local stratification of hydraulic conductivity. Water Resour Res 30:2891–2900CrossRefGoogle Scholar
  29. Liu G, Zheng C, Gorelick SM (2004) Limits of applicability of the advection-dispersion model in aquifers containing connected high-conductivity channels. Water Resour Res 40:8308, http://dx.doi.org/10.1029/2003WR002735. Cited 29 November 2006CrossRefGoogle Scholar
  30. Plummer LN, Friedman LC (1999) Tracing and dating young ground water. US Geol Surv Fact Sheet 134–199, USGS, Reston, VAGoogle Scholar
  31. Reilly TE, Franke OL, Bennett GD (1989) Bias in groundwater samples caused by wellbore flow. J Hydraul Eng 115:270–276CrossRefGoogle Scholar
  32. Sanford WE (1997) Correcting for diffusion in Carbon-14 dating of ground water. Ground Water 35:357–361CrossRefGoogle Scholar
  33. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Hydrochemical tracers in the middle Rio Grande Basin, USA. 2. Calibration of a groundwater-flow model. Hydrogeol J 12:389–407CrossRefGoogle Scholar
  34. Shapiro SD, LeBlanc D, Schlosser P, Ludin A (1999) Characterizing a sewage plume using the 3H-3He dating technique. Ground Water 37:871–878CrossRefGoogle Scholar
  35. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38:1198CrossRefGoogle Scholar
  36. Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39:1051, http://dx.doi.org/10.1029/2001WR001146. Cited 29 November 2006CrossRefGoogle Scholar
  37. Zinn B, Meigs LC, Harvey CF, Haggerty R, Peplinski WJ, Freiherr von Schwerin C (2004) Experimental visualization of solute transport and mass transfer processes in two-dimensional conductivity fields with connected regions of high conductivity. Environ Sci Technol 38:3916–3926CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.US Geological SurveyRestonUSA

Personalised recommendations