Hydrogeology Journal

, Volume 15, Issue 1, pp 133–154 | Cite as

The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology

Paper

Abstract

The application of satellite differential synthetic aperture radar (SAR) interferometry, principally coherent (InSAR) and to a lesser extent, persistent-scatterer (PSI) techniques to hydrogeologic studies has improved capabilities to map, monitor, analyze, and simulate groundwater flow, aquifer-system compaction and land subsidence. A number of investigations over the previous decade show how the spatially detailed images of ground displacements measured with InSAR have advanced hydrogeologic understanding, especially when a time series of images is used in conjunction with histories of changes in water levels and management practices. Important advances include: (1) identifying structural or lithostratigraphic boundaries (e.g. faults or transitional facies) of groundwater flow and deformation; (2) defining the material and hydraulic heterogeneity of deforming aquifer-systems; (3) estimating system properties (e.g. storage coefficients and hydraulic conductivities); and (4) constraining numerical models of groundwater flow, aquifer-system compaction, and land subsidence. As a component of an integrated approach to hydrogeologic monitoring and characterization of unconsolidated alluvial groundwater basins differential SAR interferometry contributes unique information that can facilitate improved management of groundwater resources. Future satellite SAR missions specifically designed for differential interferometry will enhance these contributions.

Keywords

Remote sensing Subsidence Aquifer-system compaction Groundwater flow InSAR 

Résumé

L’application de l’interférométrie différentielle radar à synthèse d’ouverture (SAR en anglais), principalement cohérent (InSAR en anglais) et dans une moindre mesure, des techniques “persistent-scatterer” (PSI en anglais), aux études hydrogéologiques, ont amélioré les capacités à cartographier, surveiller, analyser et simuler l’écoulement des eaux souterraines, la compaction des systèmes aquifères et les subsidences de terrain. Un certain nombre d’investigations menées durant les dernières décennies montre comment les images spatialement détaillées des déplacements du sol mesurées avec l’InSAR, permettent de mieux comprendre l’hydrogéologie, particulièrement lorsque une série d’images est utilisée parallèlement à des chroniques historiques du changement des niveaux d’eau et des méthodes de gestion. Les avancées importantes comprennent: (1) l’identification structurelle ou lithostratigraphique des limites (par ex. les failles ou changement de faciès) de l’écoulement souterrain et de la déformation; (2) la définition de l’hétérogénéité matérielle et hydraulique des systèmes aquifères déformés; (3) l’estimation des propriétés du système (par ex. les coefficients d’emmagasinement et les conductivités hydrauliques); et (4) la contrainte des modèles numériques de l’écoulement des eaux souterraines, de la compaction des systèmes aquifères, et de la subsidence des sols. En tant que composante d’une approche intégrée de la surveillance hydrogéologique et de la caractérisation des bassins hydrogéologiques constitués d’alluvions non-consolidés, l’interférométrie différentielle SAR fournit une information unique qui peut aider à améliorer la gestion de la ressource en eaux souterraines. Les futures missions satellite SAR spécifiquement montées pour l’interférométrie différentielle, permettront de préciser ces contributions.

Resumen

La aplicación de interferometría de radar satelital diferencial sintético de apertura (SAR), principalmente coherente (lnSAR), y en menor extensión, de técnicas de dispersión persistente (PSI) en estudios hidrogeológicos ha mejorado las capacidades de mapeo, monitoreo, análisis, y simulación de flujo de agua subterránea, compactación de sistema de acuífero y hundimiento del terreno. Varias investigaciones de la década pasada muestran como las imágenes espaciales detalladas de desplazamientos del terreno medidos con lnSAR han aumentado el entendimiento hidrogeológico, especialmente cuando se usa una serie de tiempo de imágenes en conjunto con registros de cambios en niveles de agua y prácticas de gestión. Los avances importantes incluye: (1) identificación de límites litoestratigráficos o estructurales (por ejemplo, fallas o facies transicionales) de flujo de agua subterránea y deformación; (2) definición del material y heterogeneidad hidráulica de sistemas de acuíferos en deformación; (3) estimación de propiedades del sistema (por ejemplo, coeficientes de almacenamiento y conductividades hidráulicas); y (4) delimitacion de modelos numéricos de flujo de agua subterránea, compactación de sistema de acuífero, y hundimiento del terreno. Como un componente de un enfoque integrado de monitoreo y caracterización hidrogeológica de cuencas de agua subterránea aluviales no consolidadas la interferometría diferencial SAR contribuye información única que puede facilitar la gestión mejorada de recursos de agua subterránea. Las misiones futuras satelitales SAR diseñadas específicamente para interferometría diferencial van a estimular estas contribuciones.

References

  1. Alley WM (2006) US groundwater: reserves for the future? Environment 48(3)11:25Google Scholar
  2. Amelung F, Galloway DL, Bell JW, Zebker H (1999) Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27(6):483–486CrossRefGoogle Scholar
  3. Bawden GW, Thatcher W, Stein RS, Hudnut K (2001) Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412:812–815CrossRefGoogle Scholar
  4. Bawden GW, Sneed M, Stork SV, Galloway DL (2003) Measuring human-induced land subsidence from space. USGS Fact Sheet 069-03. http://pubs.usgs.gov/fs/fs06903/. Cited 29 Sept 2006
  5. Beaver J, Tatlow M, Cohen D, Marra M (2005) Monitoring subsidence trends in Phoenix with SAR interferometry. EOS TransAGU Fall Meet Suppl 86(52), abstract G51C-0852Google Scholar
  6. Bell JW, Price JG (1991) Subsidence in Las Vegas Valley, 1980–91. Open-File Rep 93-5, Nevada Bureau of Mines and Geology, Reno, NVGoogle Scholar
  7. Bell JW, Amelung F, Ramelli AR, Blewitt G (2002) Land subsidence in Las Vegas, Nevada, 1935–2000: New geodetic data show evolution, revised spatial patterns, and reduced rates. Environ Eng Geosci 8(3):155–174CrossRefGoogle Scholar
  8. Buckley SM, Rosen PA, Hensley S, Tapley BD (2003) Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J Geophys Res 108(B11):2542. DOI 10.1029/2002JB001848. Cited 18 October 2006CrossRefGoogle Scholar
  9. Burbey TJ (2001a) Stress–strain analyses for aquifer-system characterization. Ground Water 39(1):128–136CrossRefGoogle Scholar
  10. Burbey TJ (2001b) Storage coefficient revisited: Is purely vertical strain a good assumption? Ground Water 39(3):458–464CrossRefGoogle Scholar
  11. Burbey TJ (2002) The influence of faults in basin-fill deposits on land subsidence, Las Vegas, Nevada, USA. Hydrogeol J 10(5):525–538CrossRefGoogle Scholar
  12. Burbey TJ (2005) Use of vertical and horizontal deformation data with inverse models to quantify parameters during aquifer testing. Proceedings of the 7th International Symposium on Land Subsidence, vol 2, Shanghai, 23–28 Oct. 2005 Shanghai Scientific and Technical Publishers, pp 560–569Google Scholar
  13. Canuti P, Casagli N, Farina P, Marks F, Ferretti A, Menduni G (2005) Land subsidence in the Arno River Basin studied through SAR interferometry. Proceedings of the 7th International Symposium on Land Subsidence, vol 1, Shanghai, 23–28 Oct 2005, Shanghai Scientific and Technical Publishers, pp 407–416Google Scholar
  14. Catchings RD, Goldman MR, Gandhok G, Rymer MJ, Underwood DH (2000) Seismic imaging evidence for faulting across the northwestern projection of the Silver Creek Fault, San Jose, California. USGS Open-File Repo 00-125. http://pubs.er.usgs.gov/usgspubs/ofr/ofr00125. Cited 29 Sept 2006
  15. Colesanti C, Ferretti A, Novali F, Prati C, Rocca F (2003) SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans Geosci Remote Sens 4(7):1685–1701CrossRefGoogle Scholar
  16. Coplin LS, Galloway D (1999) Houston-Galveston, Texas: managing coastal subsidence. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. USGS Circular 1182, pp 35–48. http://pubs.usgs.gov/circ/circ1182/. Cited 29 Sept 2006
  17. Danskin WR, Kasmarek MC, Strom EW (2003) Optimal withdrawal of elastically stored ground water in the Chicot Aquifer, Houston area, Texas. In: Prince KR, Galloway DL (eds) US Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Galveston, Texas, 27–29 November 2000, USGS Open-File Rep 03-308, pp 39–48. http://pubs.usgs.gov/of/2003/ofr03-308/pdf/OFR03-308.pdf. Cited 29 Sept 2006
  18. Dutcher LC, Garrett AA (1963) Geologic and hydrologic features of the San Bernardino Area, California. USGS Water Suppl Pap 1419. http://pubs.er.usgs.gov/usgspubs/wsp/wsp1419. Cited 29 Sept 2006
  19. Epstein VJ (1987) Hydrologic and geologic factors affecting land subsidence near Eloy, Arizona. USGS Water Resour Invest Rep 87-4143, http://pubs.er.usgs.gov/usgspubs/wri/wri874143. Cited 29 Sept 2006
  20. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38:2202–2212CrossRefGoogle Scholar
  21. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  22. Ferretti A, Novali R, Bürgmann R, Hilley G, Prati C (2004) InSAR permanent scatterer analysis reveals ups and downs in the San Francisco Bay Area. EOS 85(34):317–324CrossRefGoogle Scholar
  23. Fram MS, Bergouse JK, Bergamaschi BA, Fujii R, Goodwin KD, Clark JF (2002) Water-quality monitoring and studies of the formation and fate of trihalomethanes during the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, March 1998 through April 1999. USGS Open-File Rep 02-102. http://pubs.usgs.gov/of/2002/ofr02102/. Cited 29 Sept 2006
  24. Fruneau B, Sarti F (2000) Detection of ground subsidence in the city of Paris using radar interferometry: isolation of deformation from atmospheric artifacts using correlation. Geophys Res Lett 27(24):3981-3984. DOI 10.1029/2000GL008489 CrossRefGoogle Scholar
  25. Galloway DL, Hudnut KW, Ingebritsen SE, Phillips SP, Peltzer G, Rogez F, Rosen PA (1998) Detection of aquifer-system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34:2573–2585CrossRefGoogle Scholar
  26. Galloway DL, Bürgmann R, Fielding E, Amelung, F, Laczniak RL (2000a) Mapping recoverable aquifer-system deformation and land subsidence in Santa Clara Valley, California, USA, using space-borne synthetic aperture radar. Proceedings of the 6th International Symposium on Land Subsidence, vol 2, Ravenna, Italy, 24–29 Sept 2000, National Research Council of Italy (CNR), pp 229–236Google Scholar
  27. Galloway DL, Jones DR, Ingebritsen SE (2000b) Measuring land subsidence from space. USGS Fact Sheet 051-00. http://pubs.usgs.gov/fs/fs-051-00/. Cited 29 Sept 2006
  28. Galloway DL, Coplin LS, Ingebritsen SE (2003) Effects of land subsidence in the Greater Houston area. In: Agthe DE, Billings RB, Buras N (eds) Managing urban water supply, chap. 12. Kluwer, Dordrecht, The Netherlands, pp 187–203Google Scholar
  29. Halford KJ, Laczniak RJ, Galloway DL (2005) Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada. USGS Sci Invest Rep 2005-5211. http://pubs.usgs.gov/sir/2005/5211/. Cited 29 Sept 2006
  30. Hanson RT (1989) Aquifer-system compaction, Tucson Basin and Avra Valley, Arizona. USGS Water Resour Invest Rep 88-4172. http://pubs.er.usgs.gov/usgspubs/wri/wri884172. Cited 29 Sept 2006
  31. Hanson RT, Li Z, Faunt CC (2004) Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara County, California. USGS Sci Invest Rep 2004-5231. http://pubs.usgs.gov/sir/2004/5231/. Cited 29 Sept 2006
  32. Helm DC (1975) One-dimensional simulation of aquifer-system compaction near Pixley, California, 1. Constant parameters. Water Resour Res 11:465–478Google Scholar
  33. Helm DC (1978) Field verification of a one-dimensional mathematical model for transient compaction and expansion of a confined aquifer system. Verification of Mathematical and Physical Models in Hydraulic Engineering, American Society of Civil Engineers Hydraulics Division Specialty Conference, 26th, University of Maryland, College Park, MD, 9–11 Aug 1978, pp 189–196Google Scholar
  34. Heywood CE, Galloway DL, Stork SV (2002) Ground displacements caused by aquifer-system water-level variations observed using interferometric synthetic aperture radar near Albuquerque, New Mexico. USGS Water Resour Invest Rep 02-4235. http://nm.water.usgs.gov/publications/abstracts/wrir02-4235.html. Cited 29 Sept 2006
  35. Hoffmann J (2005) The future of satellite remote sensing in hydrogeology. Hydrogeol J 13:247–250. http://dx.doi.org/10.1007/s10040-004-0409-2 CrossRefGoogle Scholar
  36. Hoffmann J, Zebker HA (2003) Prospecting for horizontal surface displacements in Antelope Valley, California, using satellite radar interferometry. J Geophys Res 108(F1):6011. http://dx.doi.org/10.1029/2003JF000055. Cited 18 Oct 2006CrossRefGoogle Scholar
  37. Hoffmann J, Galloway DL, Zebker HA, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37:1551–1566CrossRefGoogle Scholar
  38. Hoffmann J, Galloway DL, Zebker HA (2003a) Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resour Res 39(2):1031. DOI 10.1029/2001WR001252
  39. Hoffmann J, Leake SA, Galloway DL, Wilson AM (2003b) MODFLOW-2000 ground-water model-user guide to the subsidence and aquifer-system compaction (SUB) package. USGS Open-File Rep 03-233. http://pubs.usgs.gov/of/2003/ofr03-233/. Cited 29 Sept 2006
  40. Holzer TL, Galloway DL (2005) Impacts of land subsidence caused by withdrawal of underground fluids in the United States. In: Ehlen J, Haneberg WC, Larson RA (eds) Humans as geologic agents. Rev Eng Geol 16:87–99Google Scholar
  41. Hooper A, Zebker HA, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611. DOI 10.1029/2004GL021737. Cited 18 Oct 2006CrossRefGoogle Scholar
  42. Ikehara ME, Phillips SP (1994) Determination of land subsidence related to ground-water level declines using global positioning system and leveling surveys in Antelope Valley, Los Angeles and Kern Counties, California, 1992. USGS Water Resour Invest Rep 94-4184. http://pubs.er.usgs.gov/usgspubs/wri/wri944184. Cited 29 Sept 2006
  43. Ikehara ME, Galloway DL, Fielding E, Bürgmann R, Lewis AS, Ahmadi B (1998) InSAR imagery reveals seasonal and longer-term land-surface elevations changes influenced by ground-water levels and fault alignment in Santa Clara Valley, California. EOS Trans AGU Fall Meet Suppl 79(45), abstract U21A-15Google Scholar
  44. Ingebritsen SE, Jones DR (1999) Santa Clara Valley, California: a case of arrested subsidence. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. USGS Circular 1182, pp 15-22. http://pubs.usgs.gov/circ/circ1182/. Cited 29 Sept 2006
  45. Jachens RC, Wentworth CM, Graymer RW, McLaughlin RJ, Chuang FC (2002) A 40-km-long concealed basin suggests large offset on the Silver Creek fault, Santa Clara Valley, California. GSA Abstr Prog 34(5):A99Google Scholar
  46. Kampes D (2005) Displacement parameter estimation using permanent scatterer interferometry. DLR-Forschungsberichte 16Google Scholar
  47. Kircher M (2004) Analyse flächenhafter Senkungserscheinungen in sedimentären Gebieten mit den neuen Techniken der Radarfernerkundung am Beispiel der Niederrheinischen Bucht [Analysis of extensive subsidence in sedimentary areas with the new techniques of radar remote sensing using the example of the lower Rhine basin]. PhD Thesis, Universität Bonn, Germany. http://hss.ulb.uni-bonn.de/diss_online/math_nat_fak/2004/kircher_michaela/index.htm. Cited 19 Sept 2006
  48. Laczniak RJ, Galloway DL, Sneed M (2003) InSAR detection of post-seismic and coseismic ground-surface deformation associated with underground weapons testing, Yucca Flat, Nevada Test Site, (abstract). In: Prince KR, Galloway DL (eds) US Geological Survey Subsidence Interest Group Conference, Proceedings of the technical meeting, Galveston, 27–29 Texas, November 2000. USGS Open-File Rep 03-308, pp 121–128. http://pubs.usgs.gov/of/2003/ofr03-308/. Cited 29 Sept 2006
  49. Leake SA, Prudic DE (1991) Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model. Techniques of Water-Resources Investigations, book 6, chap. A2, US Geological Survey. http://pubs.er.usgs.gov/usgspubs/twri/twri06A2. Cited 29 Sept 2006
  50. Leighton DA, Phillips SP (2003) Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California. USGS Water Resour Invest Rep 03-4106. http://pubs.usgs.gov/wri/wrir034016/text.html. Cited 29 Sept 2006
  51. Lu Z, Danskin WR (2001) InSAR analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophys Res Lett 28(13):2661–2664CrossRefGoogle Scholar
  52. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations, book 6, chap. A1, US Geological Survey. http://pubs.usgs.gov/twri/twri6a1/. Cited 29 Sept 2006
  53. Malmberg GT (1965) Available water supply of the Las Vegas ground-water basin, Nevada. USGS Water Suppl Pap 1780. http://pubs.er.usgs.gov/usgspubs/wsp/wsp1780. Cited 29 Sept 2006
  54. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36(4):441–500CrossRefGoogle Scholar
  55. Morgan DS, Dettinger MD (1996) Ground-water conditions in Las Vegas Valley, Clark County, Nevada, Part 2, Hydrogeology and simulation of ground-water flow. USGS Water Suppl Pap 2320-B. http://pubs.er.usgs.gov/usgspubs/wsp/wsp2320B. Cited 29 Sept 2006
  56. National Research Council (1991) Mitigating losses from land subsidence in the United States. National Academy Press, Washington, DC, p 58Google Scholar
  57. Nolan M, Fatland DR, Hinzman L (2003) DInSAR measurement of soil moisture. IEEE Trans Geosci Remote Sens 41(12):2802–2813CrossRefGoogle Scholar
  58. NPA (2006) Ground stability (InSAR): applications and case studies, London, UK. http://www.npagroup.com/insar/apps/london_psi.htm. Cited 29 Sept 2006
  59. Pavelko MT (2000) Ground-water and aquifer-system-compaction data from the Lorenzi Site, Las Vegas, Nevada, 1994–99. USGS Open-File Rep 00-362. http://pubs.er.usgs.gov/usgspubs/ofr/ofr00362. Cited 29 Sept 2006
  60. Pavelko MT (2004) Estimates of hydraulic properties from a one-dimensional numerical model of vertical aquifer-system deformation, Lorenzi Site, Las Vegas, Nevada. USGS Water Resour Invest Rep 03-4083. http://pubs.usgs.gov/wri/wri034083/. Cited 29 Sept 2006
  61. Pavelko MT, Wood DB, Laczniak RJ (1999) Las Vegas, Nevada: gambling with water in the desert. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. USGS Circular 1182, pp 49–64. http://pubs.usgs.gov/circ/circ1182/. Cited 29 Sept 2006
  62. Pavelko MT, Hoffmann, J, Damar NA (2006) Interferograms showing land subsidence and uplift in Las Vegas Valley, Nevada, 1992–99. USGS Sci Invest Rep 2006-5218. http://pubs.water.usgs.gov/sir2006-5218/. Cited 29 Sept 2006
  63. Phillips SP, Carlson CS, Metzger LF, Howle JF, Galloway DL, Sneed M, Ikehara ME, Hudnut KW, King NE (2003) Analysis of tests of subsurface injection, storage, and recovery of freshwater in Lancaster, Antelope Valley, California. USGS Water Resour Invest Rep 03-4061. http://ca.water.usgs.gov/pubs/wrir_03-4061.html. Cited 29 Sept 2006
  64. Poland JF, Ireland RL (1988) Land subsidence in the Santa Clara Valley, California, as of 1982. USGS Prof Pap 497-F. http://pubs.er.usgs.gov/usgspubs/pp/pp497F. Cited 29 Sept 2006
  65. Poland JF, Lofgren BE, Ireland RL, Pugh RG (1975) Land subsidence in the San Joaquin Valley, California, as of 1972. USGS Prof Pap 437-H. http://pubs.er.usgs.gov/usgspubs/pp/pp437H. Cited 29 Sept 2006
  66. Ponti DJ (1985) The Quaternary alluvial sequence of the Antelope Valley, California. Geol Soc Am Spec Pap 203:79–86Google Scholar
  67. Riley FS (1969) Analysis of borehole extensometer data from central California. In: Tison LJ (ed) Land subsidence. Int Assoc Sci Hydrol Publ 89(2):423–431Google Scholar
  68. Riley FS (1998) Mechanics of aquifer systems: the scientific legacy of Joseph F. Poland. In: Borchers JW (ed) Land subsidence case studies and current research: proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence. Assoc Eng Geol Spec Publ 8:13–27Google Scholar
  69. Rosen PA, Hensley S, Joughin IR, Li, FK, Madsen SN, Rodriguez E, Goldstein RM (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382CrossRefGoogle Scholar
  70. Schmidt DA, Bürgmann R (2003) Time dependent land uplift and subsidence in the Santa Clara Valley, California, from a large InSAR data set. J Geophys Res 108(B9):2416. DOI 10.1029/2002JB002267. Cited 18 October 2006CrossRefGoogle Scholar
  71. Smith LC (2002) Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Ann Am Geogr 92(3):385–398CrossRefGoogle Scholar
  72. Sneed M, Galloway DL (2000) Aquifer-system compaction and land subsidence: measurements, analyses, and simulations:¯the Holly site, Edwards Air Force Base, Antelope Valley, California. USGS Water Resour Invest Rep 00-4015. http://ca.water.usgs.gov/archive/reports/wrir004015/. Cited 29 Sept 2006
  73. Sneed M, Ikehara ME, Stork SV, Amelung F, Galloway DL (2003) Detection and measurement of land subsidence using interferometric synthetic aperture radar and global positioning system, San Bernardino County, Mojave Desert, California. USGS Water Resour Invest Rep 03-4015. http://pubs.usgs.gov/wri/wri034015/. Cited 29 Sept 2006
  74. Stork SV, Sneed M (2002) Houston-Galveston Bay area, Texas from space: a new tool for mapping land subsidence. USGS Fact Sheet 110-02. http://pubs.usgs.gov/fs/fs-110-02/. Cited 29 Sept 2006
  75. Teatini P, Tosi L, Strozzi T, Carbognin L, Wegmüller U, Rizzetto F (2005) Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Rem Sens Env 98. DOI 10.1016/j.rse.2005.08.002. Cited 18 Oct 2006
  76. Terzaghi K (1925) Erdbaumechanik auf bodenphysikalisher Grundlage [Earthworks mechanics based on soil physics]. Deuticke, Vienna, AustriaGoogle Scholar
  77. Tolman CF, Poland JF (1940) Ground-water infiltration, and ground-surface recession in Santa Clara Valley, Santa Clara County, California. Trans Am Geophys Union 21:23–34Google Scholar
  78. Usai S (2001) A new approach for long term monitoring of deformations by differential SAR interferometry, PhD Thesis, Technische Universiteit Delft, The NetherlandsGoogle Scholar
  79. Valentine DW, Densmore JN, Galloway DL, Amelung F (2001) Use of InSAR to identify land-surface displacements caused by aquifer-system compaction in the Paso Robles area, San Luis Obispo County, California, March to August 1997. USGS Open-File Rep 00-447. http://pubs.usgs.gov/of/2000/ofr00-447/. Cited 29 Sept 2006
  80. Vincent P, Larsen S, Galloway D, Laczniak RJ, Walter WR, Foxall W, Zucca JJ (2003) New signatures of underground nuclear tests revealed by satellite radar interferometry. Geophys Res Lett 30(22):2141. DOI 10.1029/2003GL018179 CrossRefGoogle Scholar
  81. Watson KM, Bock Y, Sandwell DT (2002) Satellite interferometric observations of displacements associated with seasonal groundwater in the Los Angeles Basin. J Geophys Res 107. DOI 10.1029/2001JB000470. Cited 18 October 2006
  82. Williams RA, Stephenson WJ, Wentworth CM, Odum JK, Hanson RT, Jachens RC (2002) Definition of the Silver Creek Fault and Evergreen Basin sediments from seismic reflection data, San Jose, California. EOS Trans AGU Fall Meet Suppl 83(47), abstract T71E-1207Google Scholar
  83. Wilson AM, Gorelick S (1996) The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California. J Hydrol 174:375–396CrossRefGoogle Scholar
  84. Worawattanamateekul J, Hoffmann J, Adam N, Kampers, B, Altermann W (2004) Radar interferometry technique for urban subsidence monitoring: a case study in Bangkok and its vicinity. ENVISAT Symposium 2004, Salzburg, Austria, 6–10 Sept 2004Google Scholar
  85. Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:L01607. DOI 10.1029/2003GL018827. Cited 18 Oct 2006CrossRefGoogle Scholar
  86. Zebker HA, Goldstein R (1986) Topographic mapping from interferometric SAR observations. J Geophys Res 91:4993–5001CrossRefGoogle Scholar
  87. Zebker HA, Rosen PA, Hensley S (1997) Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J Geophys Res 102(B10):7547–7563CrossRefGoogle Scholar
  88. Zilkoski DB, Hall LW, Mitchell GJ, Kammula V, Singh A, Chrismer WM, Neighbors RJ (2003) The Harris-Galveston Coastal Subsidence District/National Geodetic Survey Automated GPS Subsidence Monitoring Project. In: Prince KR, Galloway DL (eds) US Geological Survey Subsidence Interest Group Conference, proceedings of the technical meeting, Galveston, Texas,27–29 November 2000. USGS Open-File Rep 03-308, pp 13–26. http://pubs.usgs.gov/of/2003/ofr03-308/pdf/OFR03-308.pdf. Cited 29 Sept 2006

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.US Geological SurveySacramentoUSA
  2. 2.German Aerospace CenterGerman Remote Sensing Data CenterWesslingGermany

Personalised recommendations