Skip to main content
Log in

Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.

Résumé

Dans un aquifère alluvial captif situé entre deux rivières, des zones discrètes présentant une anomalie élevée en concentrations d’espèces redox comme le Fer, sont supposées être le résultat de la dynamique de l’écoulement des eaux souterraines plutôt que le résultat d’une évolution chimique le long d’une ligne d’écoulement continue. Cette nouvelle hypothèse a été confirmée sur un site d’étude situé entre les rivières Nan et Yom à Phitsanulok, en Thaïlande, en analysant les concentrations des espèces redox en comparaison avec le schéma de l’écoulement dynamique des eaux souterraines. L’incision de la rivière dans l’aquifère alluvial captif et les niveaux de la rivière variant saisonnièrement engendrent des trajectoires tronquées. La dynamique de l’écoulement des eaux souterraines entre les deux rivières présente quatre phases cycliques dont : l’écoulement de l’aquifère vers les deux rivières, l’écoulement direct d’une rivière vers l’autre, la recharge de l’aquifère à partir des deux rivières, et l’écoulement inverse rivière-à-rivière. La direction résultante de l’écoulement des eaux souterraines possède une allure en zigzag et reste globalement parallèle à la rivière. L’anomalie élevée en Fer apparaît en zones discrètes dans les aires de transition de l’aquifère alluvial captif, du fait de la recharge latérale à partir des rivières pénétrant seulement sur des dizaines de mètres dans l’aquifère. L’anomalie élevée en Fer, qui est pratiquement constante dans l’espace et dans le temps, est le résultat d’interactions entre l’eau souterraine et l’eau de surface et la dynamique de l’écoulement des eaux souterraines associée.

Resumen

En un acuífero aluvial confinado localizado entre dos ríos, existen zonas discretas de concentraciones anormalmente altas de especies redox, como el hierro, que se piensa son el resultado de la dinámica de flujo del agua subterránea más que el resultado de la evolución química a lo largo de líneas de flujo continuas. Esta nueva hipótesis se ha confirmado en un área de estudio localizado entre los ríos Nan y Yome Phitsanulok, Tailandia, mediante el análisis de las concentraciones de especies redox en comparación con la dinámica de las líneas de flujo del agua subterránea. La incisión del río en el acuífero aluvial confinado y las variaciones estacionales de las alturas del río dan lugar al truncamiento de las líneas de flujo. La dinámica del flujo entre los dos ríos tiene cuatro fases cíclicas, que incluyen: la descarga del acuífero en ambos ríos, el flujo directo de un río hacia el otro, la recarga hacia el acuífero desde ambos ríos y el flujo revertido entre un río y otro. Las direcciones de las líneas de flujo resultantes tienen un diseño en zigzag y su dirección general es casi paralela a la dirección del río. El contenido anormalmente alto en hierro aparece como una zona discreta en las áreas de transición del acuífero aluvial confinado porque la recarga lateral desde los ríos penetra en el acuífero solamente unos diez metros. La anomalía de altos contenidos en hierro, que es casi constante en el espacio y en el tiempo, es un resultado de la interacción entre el agua subterránea y el agua superficial y está relacionada con la dinámica de flujo del agua subterránea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • American Public Health Association, American Water Works Association, Water Pollution Control Federation (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, Amsterdam

    Google Scholar 

  • Back W (1966) Hydrochemical facies and groundwater flow patterns in northern part of Atlantic Coastal Plain. US Geol Surv Prof Pap 498-A

  • Back W, Barnes I (1965) Relation of electrochemical potentials and iron content to groundwater flow patterns. US Geol Surv Prof Pap 498-C

  • Barcelona MJ, Holm TR (1991) Oxidation-reduction capacities of aquifer solids. Environ Sci Technol 25:1565–1572

    Article  Google Scholar 

  • Barcelona MJ, Holm TR, Schock MR, George GK (1989) Spatial and temporal gradients in aquifer oxidation-reduction conditions. Water Resour Res 25:991–1003

    Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365

    Google Scholar 

  • Bourg CM, Bertin C (1993) Biochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666

    Article  Google Scholar 

  • Bouwer H, Maddock T III (1997) Making sense of the interaction between groundwater and streamflow: lessons from watermasters and adjudicators. Rivers 6:19–31

    Google Scholar 

  • Brown CJ, Schoonen MAA, Candela JL (2000) Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer. J Hydrol 237:147–168

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Champ DC, Gulens J, Jackson RE (1979) Oxidation-reduction sequences in groundwater systems. Can J Earth Sci 16:1466–1472

    Google Scholar 

  • Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30:29–36

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:22–48, 137–170, 198–212

    Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27:526–534

    Google Scholar 

  • Dahm CN, Grimm NB, Marmonier P, Valett MH, Vervier P (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshw Biol 40:427–451

    Article  Google Scholar 

  • Department of Mineral Resources (2001) Hydrogeological map of Phitsanulok, Thailand: scale 1:100,000. Department of Mineral Resources, Bangkok

    Google Scholar 

  • Dousson C, Poitevin G, Ledoux E, Detay M (1997) River bank filtration: modeling of the changes in water chemistry with emphasis on nitrogen species. J Contam Hydrol 25:129–156

    Article  Google Scholar 

  • Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL, Bath AH, Morgan-Jones M, Andrews JN (1987) Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: a basis for groundwater quality management. Appl Geochem 2:251–274

    Article  Google Scholar 

  • Fogg GE, Kreitler ChW (1982) Groundwater hydraulics and hydrochemical facies in Eocene aquifers of the East Texas Basin. Report of Investigation No. 127, Bureau of Economic Geology, University of Texas, Austin, TX

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow, II: effect of water table configuration and subsurface permeability variations. Water Resour Res 3:623–634

    Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Groffman AR, Crossey LJ (1999) Transient redox regimes in a shallow alluvial aquifer. Chem Geol 161:415–442

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of stream bed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29:89–98

    Article  Google Scholar 

  • Howard Humphreys (1986) Sukhothai groundwater development project: environmental isotope studies. Royal Irrigation Department, Bangkok

    Google Scholar 

  • Hubbert MK (1940) The theory of groundwater motion. J Geol 48:785–944

    Article  Google Scholar 

  • Ingebritsen SE, Sanford WE (1998) Groundwater in geologic processes. Cambridge University Press, New York

    Google Scholar 

  • Jacobs LA, von Gunten U, Keil R, Kuslys M (1988) Geochemical changes along river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim Cosmochim Acta 52:2693–2706

    Article  Google Scholar 

  • Kehew AE (2001) Applied chemical hydrogeology. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Kehew AE, Straw WT, Steinmann WK, Barrese PG, Passarella G, Peng WS (1996) Groundwater quality and flow in a shallow glaciofluvial aquifer impacted by agricultural contamination. Ground Water 34:491–500

    Article  Google Scholar 

  • Langmuir D (1969) Geochemistry of iron in coastal-plain groundwater of the Camden, New Jersey area. US Geol Surv Prof Pap 650-C

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Larkin RG, Sharp JM Jr (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and groundwater flow direction in alluvial aquifers. Geol Soc Am Bull 104:1608–1620

    Article  Google Scholar 

  • Lensing HJ, Vogt M, Herrling B (1994) Modeling of biologically mediated redox processes in the subsurface. J Hydrol 159:125–143

    Article  Google Scholar 

  • Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003

    Article  Google Scholar 

  • Massmann G, Pekdeger A, Merz C (2004) Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl Geochem 19:863–886

    Article  Google Scholar 

  • Meyboom P (1966) Unsteady groundwater flow near a willow ring in a hummocky moraine. J Hydrol 4:38–62

    Article  Google Scholar 

  • Meyboom P (1967) Mass transfer studies to determine the groundwater regime of permanent lakes in hummocky moraine of western Canada. J Hydrol 5:117–142

    Article  Google Scholar 

  • Meyboom P, van Everdingen RO, Freeze RA (1966) Patterns of groundwater flow in seven discharge areas in Saskatchewan and Manitoba. Geol Surv Can Bull 147:640–644

    Google Scholar 

  • National Research Council (2004) Groundwater fluxes across interfaces. Committee on Hydrologic Science, The National Academies Press, Washington DC

    Google Scholar 

  • Puls RW, Barcelona MJ (1989) Ground water sampling for metals analyses. Superfund Ground Water Issue, EPA/540/4–89/001, EPA, Washington DC

  • Rose S, Long A (1988) Monitoring dissolved oxygen in groundwater: some basic considerations. Groundwater Monit Rev 16:15–20

    Google Scholar 

  • Sanford RF (1994) A quantitative model of groundwater flow during formation of tabular sandstone uranium deposits. Econ Geol 89:341–360

    Google Scholar 

  • Sophocleous MA (1991) Stream-floodwave propagation through the Great Bend alluvial aquifer, Kansas: field measurements and numerical simulations. J Hydrol 124:207–228

    Article  Google Scholar 

  • Sophocleous MA (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Sophocleous MA, Townsend MA, Vogler LD, McClain TJ, Marks ET, Coble GR (1988) Experimental studies in stream-aquifer interaction along the Arkansas River in central Kansas: field testing and analysis. J Hydrol 98:249–273

    Article  Google Scholar 

  • Stanley EH, Jones JB (2000) Surface-subsurface interactions: past, present, and future. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, pp 405–417

    Google Scholar 

  • Starr RC, Gilham RW (1989) Denitrification and organic carbon availability in two aquifers. Ground Water 31:934–947

    Article  Google Scholar 

  • Stephens DB (1996) Vadose zone hydrology, CRC-Lewis, Boca Raton, FL

    Google Scholar 

  • Stuyfzand PJ (1989) Hydrology and water quality aspects of Rhine bank groundwater in The Netherlands. J Hydrol 106:341–363

    Article  Google Scholar 

  • Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15–27

    Article  Google Scholar 

  • Thorstenson DC, Fisher DW, Croft MG (1979) The geochemistry of the Fox Hills-Basal Hell Creek Aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour Res 15:1479–1498

    Google Scholar 

  • Tóth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67:4375–4387

    Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Google Scholar 

  • Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeologic environment. J Hydrol 10:164–176

    Article  Google Scholar 

  • Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  • US Environmental Protection Agency (1992) Secondary drinking water regulations: guidance for nuisance chemicals, EPA 810/K-92-001, http://www.epa.gov/safewater/consumer/2ndstandards.html. Cited 1 February 2004

  • Volker A (1961) Source of brackish groundwater in Pleistocene formations beneath the Dutch polderland. Econ Geol 56:1045–1057

    Article  Google Scholar 

  • von Gunten U, Kull TP (1986) Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water Air Soil Pollut 29:333–346

    Article  Google Scholar 

  • Voss CI (2005) The future of hydrogeology. Hydrogeol J 13:1–6

    Article  Google Scholar 

  • Wallick EI (1981) Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada. J Hydrol 54:245–283

    Article  Google Scholar 

  • Williams RE (1970) Groundwater flow systems and accumulation of evaporate minerals. AAPG Bull 54:1290–1295

    Google Scholar 

  • Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. US Geol Surv Prof Pap 1001

  • Winter TC (1983) The interaction of lakes with variably saturated porous media. Water Resour Res 19:1203–1218

    Article  Google Scholar 

  • Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys Suppl, pp 985–994

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1999) Groundwater and surface water: a single resource. US Geol Surv Circ 1139

  • Woessner WW (2000) Stream and fluvial plain groundwater interactions: rescaling hydrogeologic thought. Ground Water 38:423–429

    Article  Google Scholar 

  • Wondzell SM, Swanson FJ (1996) Seasonal and storm flow dynamics of the hyporheic zone of a 4th order mountain stream: I. Hydrological processes. J N Am Benthol Soc 15:3–19

    Article  Google Scholar 

  • Wongsawat S, Dhanesvanich O (1983) Hydrogeological map of Thailand: scale 1:1,000,000. Department of Mineral Resources, Bangkok

  • Wood WW (1976) Guidelines for collection and field analysis of groundwater samples for selected unstable constituents. USGS Techniques of Water Resources Investigations, Book 1, Chapter D-2, USGS, Reston, VA

Download references

Acknowledgements

Thailand Research Fund provided financial support (TRG4580065) for this study. We thank Roongwit Promma, Sanong Patanompee, Rath Wongnete, Prajonyuth Yimprae, and Siam Munmaung for field assistance. We are grateful to the Hydrology and Water Resources Management Center-Lower Northern Region, Royal Irrigation Department, for providing the river-stage data. We are also grateful to the editors and three anonymous reviewers whose detailed constructive comments have led to significant improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kitchakarn Promma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promma, K., Zheng, C. & Asnachinda, P. Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly. Hydrogeol J 15, 495–513 (2007). https://doi.org/10.1007/s10040-006-0110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0110-8

Keywords

Navigation