Hydrogeology Journal

, Volume 15, Issue 1, pp 33–45 | Cite as

The Nubian Aquifer in Southwest Egypt

  • C. A. Robinson
  • A. Werwer
  • F. El-Baz
  • M. El-Shazly
  • T. Fritch
  • T. Kusky
Paper

Abstract

Synthetic Aperture Radar (SAR) images, and topographic and groundwater data are used to understand heterogeneities of the Nubian Aquifer between 20–24.5°N and 25–32°E in southwest Egypt. New fluvial and structural interpretations emphasize that the desert landscape was produced by fluvial action, including newly mapped alluvial fans. In central locations, braided channels are spatially aligned with a NE structural trend, suggesting preferential water flow paths that are consistent with the local direction of groundwater flow. The alluvial fans and structurally enclosed channels coincide with gentle slopes and optimal recharge conditions (1–5%) derived from the new Shuttle Radar Topographic Mission (SRTM) slope map, indicating that these areas have high groundwater potential. The SAR interpretations are correlated with anomalies observed in groundwater data from 383 wells. Results suggest a relationship between the spatial organization of fluvial and structural features and the occurrence of low-salinity groundwater. Low-salinity water exists adjacent to the alluvial fans and in SW reaches of the structurally enclosed channels. Wells in the vicinity of structures contain low-salinity water, emphasizing that knowledge of structural features is essential to understand groundwater flow paths. The new approach is cost effective and noninvasive and can be applied throughout the eastern Sahara to assist in resource management decisions and support the much needed agricultural expansion.

Keywords

Arid lands Heterogeneity Drilling Remote sensing Groundwater management 

Résumé

Des images Radar à Synthèse d’Ouverture (RSO) ainsi que des données topographiques et sur les eaux souterraines ont été utilisées afin d’appréhender les hétérogénéités de l’aquifère nubien, dans un secteur situé au sud-ouest de l’Egypte, entre 20 et 24,5°N et entre 25 et 32°E. De nouvelles interprétations fluviales et structurales soulignent l’importance de l’action fluviale dans le modelage des paysages désertiques, y compris les cônes alluviaux nouvellement cartographiés. Dans les secteurs centraux, les chenaux anastomosés sont alignés selon une direction structurale NE, suggérant ainsi que les cheminements préférentiels des écoulements concordent avec les directions locales d’écoulement souterrain. Les cônes alluviaux et les chenaux encaissés coïncident avec les pentes douces et les conditions de recharge optimales (1–5%) tirées des nouvelles cartes de pentes de la mission SRTM (Shuttle Radar Topographic Mission), indiquant un fort potentiel aquifère de ces secteurs. Les interprétations RSO ont été corrélées avec les anomalies observées dans les données sur les eaux souterraines issues de 383 puits. Les résultats suggèrent une relation entre l’agencement des entités fluviales et structurales d’une part, et l’occurrence d’eaux souterraines à faible salinité d’autre part. Les eaux à faible salinité se retrouvent au contact des cônes alluviaux et des chenaux encaissés. Les puits situés à proximité des structures contiennent des eaux à faible salinité, soulignant que la connaissance des éléments structuraux est essentielle à la compréhension des cheminements de l’eau souterraine. Cette nouvelle approche est peu onéreuse et non-destructive ; elle est applicable sur toute la partie Est du Sahara, en tant qu’outil d’aide à la décision pour la gestion des ressources et que support pour l’extension nécessaire de l’agriculture.

Resumen

En el sudoeste de Egipto, para comprender las heterogeneidades del acuífero Nubio, entre 20° a 24.5° N y 25° a 32° E, se han utilizado imágenes Synthetic Aperture Radar (SAR), datos de aguas subterráneas y topografía. Nuevas interpretaciones fluviales y estructurales enfatizan que el paisaje del desierto fue producido por acción fluvial, incluyendo abanicos aluviales recientemente mapeados. En ubicaciones centrales, los canales anastomosados están alineados espacialmente con un lineamiento estructural de dirección NE, sugiriendo trayectorias de flujo preferenciales coincidentes con la dirección local del flujo de aguas subterráneas. Los abanicos aluviales y sus canales estructuralmente controlados coinciden con suaves pendientes y condiciones óptimas de recarga (1–5%) de acuerdo con el mapa de pendientes derivado de la nueva Shuttle Radar Topographic Misión (SRTM), indicando que estas áreas tienen un alto potencial de aguas subterráneas. La interpretación de SAR está correlacionada con las anomalías observadas en datos de aguas subterráneas de 383 pozos. Los resultados sugieren una relación entre la organización espacial de los rasgos fluviales y estructurales y la ocurrencia de aguas subterráneas de baja salinidad. En las adyacencias de los abanicos aluviales se encuentra agua de baja salinidad y alcanza los canales estructuralmente controlados en el SW. Los pozos en la vecindad de estructuras contienen agua de baja salinidad, resaltando que el conocimiento de los rasgos estructurales es esencial para comprender la trayectoria del flujo subterráneo. El nuevo enfoque es económicamente accesible, no invasivo y puede ser aplicado a través del este del Sahara para contribuir en las decisiones de gestión de los recursos y apoyo de las muchas necesidades de la expansión agrícola.

References

  1. Abdallatif TA, Maborouk MA, Youssef AM (1997) Geoelectrical resistivity survey to delineate the geologic setting of East El-Oweinat area, South Western Desert, Egypt. EGS Proc Ann 15(March):45–58Google Scholar
  2. Atta SA, Mussa MA, Said M (1989) Hydrochemical study on the groundwater of the Nubia sandstone aquifer in East El-Oweinat area, southwest Egypt. Geol Surv Egypt XVI:321–323Google Scholar
  3. Babiker M, Gudmundsson A (2004) The effects of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297:256–273CrossRefGoogle Scholar
  4. Bagnold RA (1931) Journeys in the Libyan Desert. Geogr J 82:103–235CrossRefGoogle Scholar
  5. Ball J (1927) Problems of the Libyan Desert. Geograph J 70:21–512CrossRefGoogle Scholar
  6. Beadnell H (1901) Dakhla Oasis: its topography and geology. Geological Survey Report 1899, part IV. Public Works Ministry, CairoGoogle Scholar
  7. Bergen KM, Robinson CA, DeRoo R, Pierce LE (1998) SIR-C analysis of desert sabkha, ISBN: 0-7803-4406-5, Paper No. C06-07.pdf, IGARSS, Seattle, WAGoogle Scholar
  8. Bisson RA, El-Baz F (1991) Megawatersheds exploration model. Proc. 23rd Int. Symp. on Remote Sensing of Environment, Bangkok, April 1990, pp 247–273Google Scholar
  9. Blumberg D, Neta T, Margalit N, Lazar M, Freilikher V (2004) Mapping exposed and buried drainage systems using remote sensing in the Negev Desert, Israel. Geomorphology 61:239–250CrossRefGoogle Scholar
  10. Brookes IA (1983) Dakhleh Oasis: a geoarcheological reconnaissance. SSEA J 13:167–187Google Scholar
  11. Burke K, Wells GL (1989) Trans-African drainage system of the Sahara: Was it the Nile? Geology 17:743–747CrossRefGoogle Scholar
  12. CEDARE (2001) Regional strategy for the utilization of the Nubian Sandstone Aquifer System (groundwater model). Center for the Environment and Development for the Arab Region and Europe, CairoGoogle Scholar
  13. Daniels J, Blumberg DG, Vulfson LD, Kotlyar AL, Freiliker V, Ronen G, Ben-Asher J (2003) Microwave remote sensing of physically buried objects in the Negev Desert: implications for environmental research. Remote Sens Environ 86:243–256CrossRefGoogle Scholar
  14. Elachi C, Granger J (1982) Spaceborne imaging radars probe in depth. IEEE Spectrum 19:24–29Google Scholar
  15. Elachi C, Roth LE, Schaber GG (1984) Spaceborne radar subsurface imaging in hyperarid regions. IEEE Trans Geosci Rem Sens GE-22:383–388CrossRefGoogle Scholar
  16. El-Baz F (1982) Genesis of the Great Sand Sea, Western Desert of Egypt. International Association of Sedimentologists, 11th Int. Congr. on Sedimentology, Hamilton, ON, 22–27 August 1982Google Scholar
  17. El-Baz F (1988) Origin and evolution of the desert. Interdisciplin Sci Rev 13:331–347Google Scholar
  18. El-Baz F (1995) Utilizing satellite images for ground water exploration in fracture zone aquifers. Proc. of International Conference on Water Resources Management in Arid Countries, Muscat Oman 2:419–427Google Scholar
  19. El-Baz F (1998) Sand accumulation and groundwater in the eastern Sahara. Episodes Int Union Geol Sci 21:147–151Google Scholar
  20. El-Baz F (2000) Satellite observations of the interplay between wind and water processes in the Great Sahara. PE RS 66:777–782Google Scholar
  21. El-Baz F, Mainguet M, Robinson CA (2000) Fluvio-aeolian dynamics in the north-eastern Sahara: interrelation between fluvial and aeolian systems and implications to ground water. J Arid Environ 44:173–183CrossRefGoogle Scholar
  22. Fathy RG, El-Hefnawy MM, Abd El-Hamed A (2001) Contributions to the hydrogeology aspects of the groundwater aquifer in southern part of Darb El-Arbeain area, southern portion of Western Desert, Egypt. Al-Azhar Bull Sci 12:175–194Google Scholar
  23. Fathy RG, Nagaty M, Abd El-Hamed A, El-Gammal NM (2002) Contributions to the hydrogeological and hydrochemical characteristics of the Nubian Sandstone Aquifer in Darb El-Arbeain area, southern portion of Western Desert, Egypt. Al-Azhar Bull Sci 13:175–194Google Scholar
  24. Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 24:89–117CrossRefGoogle Scholar
  25. Ghoneim E, Robinson CA, El-Baz F (2006) Radar topography data reveal relics in the eastern Sahara. Int J Remote Sens (in press)Google Scholar
  26. Haynes CV Jr (1982) Great Sand Sea and Selima Sand Sheet: geochronology of desertification. Science 217:629–633CrossRefGoogle Scholar
  27. Hellström B (1940) The subterranean water in the Libyan Desert. Geogr Ann Stockh 21:206–239CrossRefGoogle Scholar
  28. Himida IH (1965) A quantitative study of the artesian water exploration resources in Kharga and Dakhla Oases, Western Desert of Egypt. Bull Inst Dessert Egypt 16:31–58Google Scholar
  29. Himida IH (1966) Artesian water of the Nubian sandstones in the oases of the Libyan Desert, U.A.R. (in Russian). Geological Series No. 6, MGRI, Moscow, pp 91–103Google Scholar
  30. Hoekstra P, Delaney A (1974) Dielectric properties of soils at UHF and microwave frequencies. J Geophys Res 79:1699–1708CrossRefGoogle Scholar
  31. Issar A, Bein A, Michaeli A (1972) On the ancient water of the Upper Nubian Sandstone aquifer in central Sinai and southern Isreal. J Hydrol 17:353–374CrossRefGoogle Scholar
  32. Issawi B (1968) The geology of Kurkur-Dungul area: Egypt. Paper No. 46, Geol Survey, Cairo, p 102Google Scholar
  33. Issawi B (1971) The geology of Darb El-Arbeain, Western Desert, Egypt. Geol Surv Egypt 1:53–92Google Scholar
  34. Issawi B (1973) Nubia sandstone type section. Bull AAPG 57:741–745Google Scholar
  35. Issawi B (1978a) Geology of Nubia West area, Western Desert, Egypt. Ann Geol Surv Egypt 8:237–253Google Scholar
  36. Issawi B (1978b) New findings on geology of Oweinat, Gilf Kebir, Western Desert, Egypt. Ann Geol Surv Egypt 8:275–293Google Scholar
  37. Issawi B (1978c) Quaternary geology of Bir Sahara, Western Desert, Egypt. Ann Geol Surv Egypt 8:293–304Google Scholar
  38. Issawi B, McCauley JF (1992) Cenozoic rivers of Egypt. In: Friedman R, Adams B (eds) The followers of horous: studies dedicated to Michael Allen Hoffman. Oxford Monograph, 20, Oxford, pp 121–138Google Scholar
  39. Jordan RL, Huneycutt BL, Werner M (1995) The SIR-C/X-SAR Synthetic Aperture Radar System. IEEE Trans Geosci Remote Sens 33:829–839CrossRefGoogle Scholar
  40. Klitzsch E, Harms JG, Lejal-Nicol, List FK (1979) Major subdivision and depositional environments of Nubian strata, southwestern Egypt. Bull AAPG 63 (6):967–974Google Scholar
  41. Kusky TM, Robinson CA, El-Baz F (2005) Tertiary-Quaternary faulting and uplift in the northern Oman Hajar Mountains. J Geol Soc 162:871–888CrossRefGoogle Scholar
  42. McCauley JF, Schaber GG, Breed CS, Grolier MJ, Haynes CV, Issawi B, Elachi C, Blom R (1982) Subsurface valleys and geoarchaeology of the eastern Sahara revealed by shuttle radar. Science 218:1004–1020CrossRefGoogle Scholar
  43. McCauley JF, Breed CS, Schaber GG, McHugh WP, Issawi B, Haynes CV, Grolier MJ, Kilani AE (1986) Paleodrainage of the eastern Sahara: the radar rivers revisited. IEEE Trans Geosci Remote Sens 24:624–648CrossRefGoogle Scholar
  44. National Research Council (1996) Rock fractures and fluid flow. National Academy Press, Washington, DC, 551 ppGoogle Scholar
  45. Parashar S, Langham E, McNally J, Ahmed S (1993) RADARSAT mission requirements and concept. Can J Remote Sens 19:280–288Google Scholar
  46. Patterson LJ, Sturchio NC, Mack Kennedy B, van Soest MC, Sultan M, Lu Z-T, Lehmann B, Purtschert R, El Alfy Z, El Kaliouby B, Dawood Y, Abdallah A (2005) Cosmogenic, radiogenic and stable isotopic constraints on groundwater residence time in the Nubian Aquifer, Western Desert of Egypt. Geochem Geophys Geosys 6(1):Q01005CrossRefGoogle Scholar
  47. Robinson CA, Kusky T, El-Baz F, El-Etr H (1999a) Using radar data to assess structural controls from variable channel morphology: examples from the eastern Sahara. Proc. of the 13th Int. Conf. on Applied Geologic Remote Sensing, Vancouver, BC, March 1999, pp 381–386Google Scholar
  48. Robinson CA, El-Baz F, Singhroy V (1999b) Subsurface imaging by Radarsat: comparison with Landsat TM Data and implications to ground water in the Selima area, northwestern Sudan. Can J Remote Sens 25:268–277Google Scholar
  49. Robinson CA, El-Baz F, Ozdogan M, Ledwith M, Blanco D, Oakley S, Inzana J (2000) Use of radar data to delineate palaeodrainage flow directions in the Selima Sand Sheet, eastern Sahara. PE RS 66:745–753Google Scholar
  50. Robinson CA (2002) Application of satellite radar data suggests that the Kharga depression in southwestern Egypt is a fracture rock aquifer. Int J Remote Sens 23:4101–4113CrossRefGoogle Scholar
  51. Robinson CA, El-Baz F, Al-Saud TSM, Jeon SB (2006) Use of radar data to delineate palaeodrainage leading to the Kufra Oasis in the Eastern Sahara. J Afr Earth Sci 44:229–240CrossRefGoogle Scholar
  52. Roth LE, Elachi C (1975) Coherent electromagnetic losses by scattering from volume inhomogeneities. IEEE Trans Antennas Propag 23:674–675CrossRefGoogle Scholar
  53. Rüssegger JR (1837) Kreide und Sandstein: Einfluss von Granit auf letzteren [Chalk and sandstone: the influence of granite on the latter]. N Jb Mineral 1837:665–669Google Scholar
  54. Sabed SS, Zeid AM (2003) Contributions to the hydrogeology of Nubian sandstone aquifer in East El-Oweinat area, south Western Desert, Egypt. Isotope Rad Res 33:161–177Google Scholar
  55. Sabins FF Jr, Blom R, Elachi E (1980) Seasat radar image of the San Andreas fault, California. Am Assoc Petrol Geol Bull 64:619–628Google Scholar
  56. Sadek MA, Abd El-Samie SG, El-Arabi NE, Ahmed MA (2001) Hydrochemical, isotopic and age characteristics of the groundwater in the Nubian sandstone aquifer, South Western Desert, Egypt. Isotope Rad Res 33:161–177Google Scholar
  57. Schaber GG, McCauley JF, Breed CS (1997) The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt. Remote Sens Environ 59:337–363CrossRefGoogle Scholar
  58. Sturchio NC, Du X, Purtschert R, Lehmann BE, Sultan M, Patterson LJ, Lu Z-T, Müller P, Bigler K, O’Connor TP, Young L, Lorenzo R, Becker R, El Alfy Z, El Kaliouby B, Dawood Y, Abdallah AMA (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503CrossRefGoogle Scholar
  59. Sultan M, Sturchio N, Becker R, Manocha N, Milewski A (2004) Palaeodrainage networks of the Nubian Aquifer System revealed from SIR-C and SRTM data. Northeastern Section (39th Annual) and Southeastern Section (53rd Annual) Joint GSA Meeting, Paper No. 15–2, GSA, Boulder, COGoogle Scholar
  60. Suna G, Ranson KJ, Kharuk VI, Kovac K (2003) Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens Environ 88:401–411CrossRefGoogle Scholar
  61. Szabo BJ, Haynes CV Jr, Maxwell TA (1995) Ages of Quaternary pluvial episodes determined by uranium-series and radiocarbon dating of lacustrine deposits of eastern Sahara. Paleogeogr Paleoclimatol Paleoecol 113:227–242CrossRefGoogle Scholar
  62. Thorweihe U (1990) The Nubian aquifer system. In: Said R (ed) The Geology of Egypt. Balkema, Lisse, The Netherlands, pp 601–614Google Scholar
  63. Thorweihe U, Heinl M (1993) Groundwater resources and management in southwest Egypt. Catena Supplement, Biomineralization Processes of Iron and Manganese. Berliner Geowissenschaft Abhand 26:99–121Google Scholar
  64. Thurmond AK, Stern RJ, Abdelsalam MG, Nielsen KC, Abdeen MM and Hinz E (2004) The Nubian swell. J Afr Earth Sci 39:401–407CrossRefGoogle Scholar
  65. Verhagen BT (1995) Semiarid zone groundwater mineralization processes as revealed by environmental isotope studies. In: Application of tracers in arid zone hydrology. IAHS, Wallingford, UK, pp 245–266Google Scholar
  66. United States Geological Survey (2003) Shuttle Radar Topography Mission, SRTM USGS-facts http://srtm.usgs.gov/mission/quickfacts.html Cited 06 January 2006
  67. Wendorf F, Close AE, Schild R (1987) Recent work on the middle Paleolithic of the eastern Sahara. Afr Archaeol Rev 5:49–63CrossRefGoogle Scholar
  68. Wendorf F, Schild R, Close AE (1993) Summary and conclusions In: Egypt During the Last Interglacial, Plenum, New York, p 553Google Scholar
  69. Youssef MS, El-Saady MN (1964) Relation between ground-water composition and geology of Dakhla Oasis. Bull Geogr Egypt T:101–112Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • C. A. Robinson
    • 1
    • 5
  • A. Werwer
    • 2
  • F. El-Baz
    • 1
  • M. El-Shazly
    • 2
  • T. Fritch
    • 3
  • T. Kusky
    • 4
  1. 1.Center for Remote SensingBoston UniversityBostonUSA
  2. 2.General Company for Research and Groundwater (REGWA)CairoEgypt
  3. 3.Department of Earth and Environmental Sciences14 Holmes Hall, Northeastern UniversityBostonUSA
  4. 4.Department of Earth and Atmospheric SciencesSt. Louis UniversitySt. LouisUSA
  5. 5.School of Professional and Continuing Studies, Department of Earth and Environmental Sciences14 Holmes Hall, Northeastern UniversityBostonUSA

Personalised recommendations