Skip to main content
Log in

Hydrogeology of thermal waters in Viterbo area, central Italy

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A conceptual hydrogeological model of the Viterbo thermal area (central Italy) has been developed. Though numerous studies have been conducted on its geological, geochemical and geothermal features, there is no generalized picture defining the origin and yield of the hydrothermal system. These latter aspects have therefore become the objectives of this research, which is based on new hydrogeological and geochemical investigations. The geological setting results in the coexistence of overlapped interacting aquifers. The shallow volcanic aquifer, characterized by fresh waters, is fed from the area around the Cimini Mountains and is limited at its base by the semiconfining marly-calcareous-arenaceous complex and low-permeability clays. To the west of Viterbo, vertical upflows of thermal waters of the sulphate-chloride-alkaline-earth type with higher gas contents, are due to the locally uplifted carbonate reservoir, the reduced thickness of the semiconfining layer and the high local geothermal gradient. The hot waters (30–60°C) are the result of deep circulation within the carbonate rocks (0.5–1.8 km) and have the same recharge area as the volcanic aquifer. The upward flow in the Viterbo thermal area is at least 0.1 m3/s. This flow feeds springs and deep wells, also recharging the volcanic aquifer from below.

Résumé

Un modèle conceptuel hydrogéologique de la région thermale de Viterbo (Italie centrale) a été réalisé. Malgré de nombreuses études menées concernant la géologie, la géochimie et la géothermie, il n’y a pas de schéma général expliquant le fonctionnement et le débit du système hydrothermal. Ces aspects sont ainsi devenus les objectifs de cette étude, laquelle est basée sur de nouvelles investigations hydrogéologiques et géochimiques. La structur géologique consiste en une superposition d’aquifères communiquant. Un aquifère volcanique de surface, caractérisé par des eaux douces, est alimenté à partir de l’aire située autour des montagnes Cimini et est limité à sa base par un complexe marne-calcaire-arène semi-perméable et des argiles à faible perméabilité. A l’ouest de Viterbo, des remontées d’eaux thermales, de type sulfatées-chlorées-alcalino-terreuses présentant des teneurs plus élevées en gaz, s’expliquent par un réservoir carbonaté localement élevé, par l’épaisseur moindre de la couche semi-perméable et par un gradient géothermal local élevé. Les eaux chaudes (30–60°C) sont issues d’une circulation profonde à travers les roches carbonatées (0.5–1.8 km) et originaires de la même aire de recharge que celle de l’aquifère volcanique. L’écoulement ascendant dans la région thermale de Viterbo est d’au moins 0.1 m3/s. Il alimente des sources et des puits profonds et recharge également l’aquifère volcanique.

Resumen

Se ha desarrollado un modelo conceptual hidrogeológico del área termal de Viterbo (Italia central). Aún cuando se han realizado numerosos estudios sobre sus características geológicas, geoquímicas y geotermales, no hay una visión generalizada de conjunto que defina el origen y rendimiento del sistema hidrotermal. Por lo tanto, estos últimos aspectos se han constituído en los objetivos de esta investigación, que está basada sobre nuevos estudios hidrogeológicos y geoquímicos. El marco geológico da como resultado la coexistencia de acuíferos interactivos traslapados. El acuífero volcánico poco profundo, caracterizado por aguas dulces, se alimenta desde el área circundante a las montañas Cimini y está limitado en su base por un complejo semiconfinante margoso-calcáreo-arenoso y arcillas de baja permeabilidad. Hacia el oeste de Viterbo, flujos verticales ascendentes de aguas termales, de tipo sulfatadas – cloruradas – alcalino térreas con altos contenidos de gas, se deben al reservorio carbonatado localmente levantado, la reducción del espesor del estrato semiconfinante y el elevado gradiente geotermal local. Las aguas calientes (30–60°C) son resultado de circulación profunda dentro de rocas carbonáticas (0.5–1.8 km) y tienen la misma área de recarga que el acuífero volcánico. El flujo ascendente en el área termal de Viterbo es, al menos, de 0.1 m3/s. Este flujo alimenta manantiales y pozos profundos, recargando también al acuífero volcánico desde abajo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen DM, Grasby SE, Voormeij DA (2006) Determining the circulation depth of thermal springs in the southern Rocky Mountain Trench, south-eastern British Columbia, Canada using geothermometry and borehole temperature logs. Hydrogeol J 14:159–172

    Article  Google Scholar 

  • Arnone G (1979) Studio delle sorgenti termali del Lazio settentrionale [Study of the thermal springs of the northern Latium]. Rend Soc It Min Petr 35:647–666

    Google Scholar 

  • Baiocchi A, Dragoni W, Lotti F, Luzzi G, Piscopo V (2006) Outline of the hydrogeology of the Cimino and Vico volcanic area and of the interaction between groundwater and Lake Vico (Lazio Region, Central Italy). Boll Soc Geol It 125:187–202

    Google Scholar 

  • Baldi P, Ferrara GC, Masselli L, Pieretti G (1973) Hydrogeochemistry of the region between Monte Amiata and Rome. Geothermics 2:124–141

    Article  Google Scholar 

  • Baldi P, Decandia FA, Lazzarotto A, Calamai A (1974) Studio geologico del substrato della copertura vulcanica laziale nella zona dei laghi di Bolsena, Vico e Bracciano [Geological study of the volcanics substratum in the Latium Region around the lakes Bolsena, Vico and Bracciano]. Mem Soc Geol It 13:575–606

    Google Scholar 

  • Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descr Carta Geol It 49:77–134

    Google Scholar 

  • Battaglia A, Ceccarelli A, Ridolfi A, Frohlich K, Panichi C (1992) Radium isotopes in geothermal fluids in central Italy. In: Proc Int Symp on Isot Techn in Water Res Dev, IAEA, Vienna, pp 363–383

  • Bertagnini A, Sbrana A (1986) Il vulcano di Vico: stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche [The Vico Volcano: stratigraphy of the volcanic complex and sequence of the eruptions of the pyroclastic units]. Mem Soc Geol It 35:699–713

    Google Scholar 

  • Bertrami R, Cameli GM, Lovari F, Rossi U (1984) Discovery of Latera geothermal field: problems of the exploration and research. In: Proc Seminar on utilization of Geothermal Energy for Electric Power Production and Space Heating, Florence, 14–17 May 1984, pp 1–18

  • Borghetti G, Sbrana A, Sollevanti F (1981) Vulcano tettonica dell’area dei Monti Cimini e rapporti cronologici tra vulcanismo cimino e vicano [Tectono-volcanic setting of the Monti Cimini area and the chronological relationship between Mt. Cimino and Vico volcanism]. Rend Soc Geol It 4:253–254

    Google Scholar 

  • Borghetti G, La Torre P, Sbrana A, Sollevanti F (1983) Geothermal exploration in Monti Cimini Permit (north Latium, Italy). In: European Geothermal Update, 3rd Int Seminar, Monaco, 29 November–1 December, pp 419–432

  • Bredehoeft JD, Papadopulos IS (1965) Rates of vertical groundwater movement estimated from the earth’s thermal profile. Water Resour Res 1:325–328

    Article  Google Scholar 

  • Buonasorte G, Pandeli E, Fiordelisi A (1991) The Alfina 15 well: deep geological data from Northern Latium (Torre Alfina geothermal area). Boll Soc Geol It 110:823–831

    Google Scholar 

  • Calamai A, Cataldi R, Locardi E, Praturlon A (1976) Distribuzione delle anomalie geotermiche nella fascia pre-appenninica Tosco-Laziale [Distribution of the geothermal anomalies in the pre-Apennine belt of Tuscany and Latium]. In: Int Symp on Geothermal Energy in Latin America, Ciudad Guatemala, Guatemala, 16–23 Oct 1976, pp 189–229

  • Camponeschi B, Nolasco F (1984) Le risorse naturali della Regione Lazio: 2 Monti Cimini e Tuscia Romana [The natural resources of the Lazio Region: 2 Mounts Cimini and Roman Tuscia]. Regione Lazio, Rome

    Google Scholar 

  • Cataldi R, Rendina M (1973) Recent discovery of a new geothermal field: Alfina. Geothermics 2:106–116

    Article  Google Scholar 

  • Chiocchini U, Madonna S, Manna F, Lucarini C, Puoti F, Chimenti P (2001) Risultati delle indagini sull’area delle manifestazioni termominerali di Viterbo [Results of the investigation on the thermomineral area of Viterbo]. Geol Tec Ambient 1:1–34

    Google Scholar 

  • Chiodini G, Frondini F, Ponziani F (1995a) Deep structures and carbon dioxide degassing in central Italy. Geothermics 24:81–94

    Article  Google Scholar 

  • Chiodini G, Frondini F, Marini L (1995b) Theoretical geothermometers and PCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks: application to the thermal springs of the Etruscan Swell, Italy. Appl Geochem 10:337–346

    Article  Google Scholar 

  • Chiodini G, Frondini F, Kerrick DM, Rogie J, Parello F, Peruzzi L, Zanzari AR (1999) Quantification of deep CO2 fluxes from Central Italy: examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem Geol 159:205–222

    Article  Google Scholar 

  • Conforto B (1954a) Risultati della prima fase di ricerche di forze endogene nel Viterbese [Results of the first research of endogenous power in the Viterbo area]. L’Ingegnere 27:345–350

    Google Scholar 

  • Conforto B (1954b) Risultati della prima fase di ricerche di forze endogene nel Viterbese [Results of the first research of endogenous power in the Viterbo area]. L’Ingegnere 27:521–530

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric water. Science 133:1702–1703

    Article  Google Scholar 

  • Della Vedova B, Pellis G, Foucher JP, Rehault JP (1984) Geothermal structure of Tyrrhenian Sea. Mar Geol 55:271–289

    Article  Google Scholar 

  • de Marsily G (1986) Quantitative hydrogeology. Academic Press, San Diego, CA, p 440

    Google Scholar 

  • Dogramaci SS, Herczeg AL, Bone Y (1998) 87Sr/86Sr in groundwater as indicators of carbonate dissolution. In: Arehart GB, Hulston JR (eds) Proc 9th Int Symp on Water-Rock Interaction, Taupo, New Zealand, 30 March–3 April 1998, pp 211–214

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York, p 823

  • Duchi V, Minissale A (1995) Distribuzione delle manifestazioni gassose nel settore peritirrenico tosco-laziale e loro interazione con gli acquiferi superficiali [Distribution of gas emissions in the peri-Tyrrhenian belt of Tuscany and Latium and their interaction with the shallow aquifers]. Boll Soc Geol It 114:337–351

    Google Scholar 

  • Duchi V, Minissale A, Romani L (1985) Studio su acque e gas dell’area geotermica Lago di Vico-M.ti Cimini (Viterbo) [Study on waters and gases of the geothermal area Lake Vico-Mt. Cimini (Viterbo)]. Atti Soc Tosc Sci Nat 92:237–254

    Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of water from natural sources. Geoch Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Fontes JC (1980) Environmental isotopes in groundwater hydrology. In: Fritz P, Fontes JC (eds) Handbook of Environmental Isotope Geochemistry vol. 1, Elsevier, Amsterdam, pp 75–140

  • Fournier RO (1973) Silica in thermal waters: laboratory and field investigation. In: Proc Int Symp on Hydrogeochemistry and Biogeochemistry, Tokyo, September 1970, Washington, DC, pp 132–139

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1981) Application of water geochemistry to geothermal exploration and reservoir engineering. In: Rybach L, Muffler LJP (eds) Geothermal system: principles and case histories. Wiley, New York, pp 109–143

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geoch Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Fournier RO, White DE, Truesdell AH (1974) Geochemical indicators of subsurface temperature. 1. Basic assumptions. US Geol Surv J Res 2:259–262

    Google Scholar 

  • Funiciello R, Locardi E, Lombardi G, Parotto M (1977) The main volcanic groups of Latium: relations between structural evolution and petrogenesis. Geol Roma 15:279–300

    Google Scholar 

  • Ge S (1998) Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J Volcanol Geotherm Res 84:93–101

    Article  Google Scholar 

  • Kendall C, Coplen TB (1985) Multisample conversion of water to hydrogen by zinc for stable isotope determination. Anal Chem 57:1437–1440

    Article  Google Scholar 

  • Kharaka YK, Mariner RH (1988) Chemical geothermometers and their applications to formation waters from sedimentary basins. In: Thermal history of sedimentary basins: methods and case histories. Springer, Berlin Heidelberg New York

  • Kharaka YK, Gunter WD, Aggarwal PK, Perkins EH, De Braal JD (1988) SOLMINEQ.88: a computer program for geochemical modeling of water-rock interactions. USGS Water Resour Invest Rep 88–4227:208

    Google Scholar 

  • Lardini D, Nappi G (1987) I cicli eruttivi del complesso vulcanico cimino [The eruptive phases of the Cimino volcanic complex]. Soc It Min Petrol 42:141–153

    Google Scholar 

  • La Torre P, Nannini R, Sollevanti F (1981) Geothermal exploration in central Italy: geophysical survey in Cimini Range area. In: 43th Meeting European Association of Exploration Geophysicists, Venice, 26–29 May 1981

  • Locardi E (1965) Tipi di ignimbrite di magmi mediterranei. Le ignimbriti del vulcano di Vico [Types of ignimbrite eruptions of Mediterranean magma: ignimbrites of Vico Vulcano]. Atti Soc Tosc Sc Nat 72:53–173

    Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Lu N, Ge S (1996) Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer. Water Resour Res 32:1449–1453

    Article  Google Scholar 

  • Manfra L, Masi U, Turi B (1976) La composizione isotopica dei travertini del Lazio [The isotopic composition of the travertines of Latium]. Geol Roma 15:127–174

    Google Scholar 

  • Minissale A, Duchi V (1988) Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy. J Volcanol Geotherm Res 35:237–252

    Article  Google Scholar 

  • Minissale A, Kerrick DM, Magro G, Murell MT, Paladini M, Rihs S, Sturchio NC, Tassi F, Vaselli O (2002) Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth Planet Sci Lett 203:709–728

    Article  Google Scholar 

  • Panichi C, Tongiorgi E (1975) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes and travertines of central and southern Italy: a preliminary prospection method of geothermal area. In: 2nd Symposium on the Development and Use of Geothermal Energy, San Francisco, 20–29 May 1975, pp 815–825

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Water Resources Investigations Report 95–4259, US Geological Survey, Denver, CO

  • SIMN (1997) Annali Idrologici [Hydrological annals]. Servizio Idrografico e Mareografico Nazionale, Ministero dei Lavori Pubblici, Rome

    Google Scholar 

  • Sollevanti F (1983) Geologic, volcanologic and tectonic setting of the Vico-Cimino area, Italy. J Volcanol Geotherm Res 17:203–217

    Article  Google Scholar 

  • Sorey ML (1971) Measurement of vertical groundwater velocity from temperature profiles in wells. Water Resour Res 7:963–970

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Introduction and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Laboratory of Climatology, X-3, Centerton, NJ

Download references

Acknowledgements

This study was supported in part by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca), grant No. 2003049442-002. The authors would like to thank the Viterbo City Council and P. Ceron, Centro di Ricerca Geotermica ENEL, for supplying data. The authors are grateful to the anonymous reviewers and the editors for their much appreciated and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Piscopo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piscopo, V., Barbieri, M., Monetti, V. et al. Hydrogeology of thermal waters in Viterbo area, central Italy. Hydrogeol J 14, 1508–1521 (2006). https://doi.org/10.1007/s10040-006-0090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0090-8

Keywords

Navigation