Skip to main content

Advertisement

Log in

Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Understanding catchment-scale patterns of groundwater and stream salinity are important in land- and water-salinity management. A large-scale assessment of groundwater and stream data was undertaken in the eastern Mt Lofty Ranges of South Australia using geographical information systems (GIS), regional scale hydrologic data, hydrograph separation and hydrochemical techniques. Results of the study show: (1) salts were mostly of marine origin (75%), while sulfate and bicarbonate from mineral weathering comprised most of the remainder, (2) elevated groundwater salinities and stable water isotopic compositions similar to mean rainfall indicated that plant transpiration was the primary salt accumulation mechanism, (3) key factors explaining groundwater salinity were geology and rainfall, with overall catchment salinity inversely proportional to average annual rainfall, and groundwater salinity ‘hotspots’ (EC >8 mS/cm) associated with geological formations comprising sulfidic marine siltstones and shales, (4) shallow groundwater correlated with elevated stream salinity, implying that baseflow contributed to stream salt loads, with most of the annual salt load (estimated to be 24,500 tonnes) occurring in winter when baseflow volume was highest. Salt-load analysis using stream data could be a practical, low-cost technique to rapidly target the investigation of problem areas within a catchment.

Résumé

Comprendre les mécanismes de la salinité des nappes et des rivières, à l’échelle des bassins-versants, est important pour la gestion de la salinité des sols et de l’eau. Une étude à grande échelle de l’eau souterraine et des cours d’eau a été menée dans la partie Est des Mount Lofty Ranges dans le Sud de l’Australie, au moyen d’un système d’information géographique (SIG), des données hydrologiques régionales, la séparation des hydrographes et des techniques hydrochimiques. Les résultats de l’étude montrent : (i) que les sels sont essentiellement d’origine marine (75%), tandis que les sulfates et les bicarbonates provenant de l’altération minérale comprendraient surtout les « soldes », (ii) la salinité élevée dans les eaux souterraines et la composition isotopique stable similaire à celle des eaux de pluie, indiquent que la transpiration des plantes fut le mécanisme primaire de l’accumulation du sel, (iii) les facteurs clés expliquant la salinité de l’eau souterraine où la géologie et l’eau de pluie, et une salinité globale inversement proportionnelle à la pluie moyenne annuelle, des spots de salinité (Conductivité > 8 mS/cm) associés à des formations géologiques comprenant des silts compacts et des shales marins et sulfurés, (iv) les nappes phréatiques corrélées avec une salinité des cours d’eau élevée, impliquant de fait la contribution des écoulements de base à la charge en sel des cours d’eau, avec une charge maximum annuelle en hiver (estimée à 24 500 tonnes) lorsque l’écoulement de base devient plus important. L’analyse des charges en sel utilisant les données des rivières pourrait s’avérer être une technique pratique et peu coûteuse pour rapidement pointé la bonne investigation à entreprendre dans les zones à problèmes d’un bassin-versant.

Resumen

El conocimiento a escala de cuenca de los patrones de salinidad de agua fluvial y subterránea son importantes para la gestión de la salinidad del agua y suelo. Se ha llevado a cabo una evaluación en gran escala de datos de agua de río y agua subterránea en las cordilleras del Monte Lofty del sur de Australia utilizando un Sistema de Información Geográfico (SIG), datos hidrológicos de escala regional, y técnicas hidroquímicas y de separación de hidrogramas. Los resultados del estudio son los siguientes: (1) el 75% de las sales son de origen marino mientras que el restante 25% comprenden sulfato y bicarbonato derivados de intemperismo mineral, (2) las elevadas salinidades del agua subterránea y las composiciones de isótopos estables similares a la composición media de la lluvia indican que el principal mecanismo primario de acumulación de sal es la transpiración de las plantas, (3) los factores clave que explican la salinidad del agua subterránea son geología y lluvia, con una salinidad promedio para la cuenca en proporción inversa al promedio anual de lluvia, y puntos anómalos de salinidad de agua subterránea (CE >8 mS/cm) asociados con formaciones geológicas compuestas de lutitas y lodolitas marinas sulfurosas, (4) agua subterránea somera correlacionada con salinidad elevada en agua de río, lo que implica que el flujo de base contribuye cargas saladas al río, con gran parte de la carga salada anual (estimada en 24,500 tons) ocurriendo en invierno cuando el volumen de flujo base es más elevado. Los análisis de la carga salada en base a datos de río puede ser una técnica práctica y de bajo costo para orientar rápidamente la investigación de áreas problemáticas dentro de una cuenca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acworth RI, Jankowski J (2001) Salt sources for dryland salinity: evidence from an upland catchment on the Southern Tablelands of New South Wales. Aust J Soil Res 39:39–59

    Article  Google Scholar 

  • Blackburn G, McLeod S (1983) Salinity of atmospheric precipitation in the Murray-Darling Drainage Division, Australia. Aust J Soil Res 21:411–434

    Article  Google Scholar 

  • Cox JW, Ashley R (2000) Water quality of gully drainage from texture contrast soils in the Adelaide Hills in low rainfall years. Aust J Soil Res 38:959–972

    Article  Google Scholar 

  • Cox J, Fritsch E, Fitzpatrick R (1996) Interpretation of soil features produced by ancient and modern processes in degraded landscapes. 7. Water duration. Aust J Soil Res 34:803–824

    Article  Google Scholar 

  • Cox J, Spouncer L, Davies P (1999) Water and soil degradation in the Keynes Catchment, South Australia: 2. Electrical conductivity, pH and chloride concentrations of the regolith. 40/99, CSIRO Land and Water, Adelaide

  • Cox J, Kerryn McEwan, Phil Davies, Smitt C, Herczeg A, Walker G (2002a) Salt Transport in the Bremer Hills, SA: Report for NAP South Australian salt mapping and management. 50/02, CSIRO Land and Water, Adelaide

  • Cox JW, Chittleborough DJ, Brown HJ, Pitman A, Varcoe JCR (2002b) Seasonal changes in hydrochemistry along a toposequence of texture-contrast soils. Aust J Soil Res 40:581–604

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36(2):338

    Article  Google Scholar 

  • Department of Water, Land and Biodiversity Conservation (DWLBC) online database system “Obswell”. http://www.dwlbc.sa.gov.au/water/groundwater/obswell.html. Accessed Dec 2002

  • Ecker S (1998) Ground water modelling and salt balance analysis to determine target areas for recharge reduction in the Bremer Catchment. MSc Thesis, The University of Adelaide, Adelaide, pp 80

  • Environmental Protection Agency (EPA) (2000) The state of health of the Mt Lofty Ranges catchments from a water quality perspective. EPA, Dept of Environment and Heritage. Government of South Australia, pp 28

  • Fitzpatrick R, Fritsch E, Self PG (1996) Interpretation of soil features produced by ancient and modern processes in degraded landscapes. 5. Development of saline sulfidic features in non-tidal seepage areas. Geoderma 69:1–29

    Article  Google Scholar 

  • Grayson RB, Argent RM, Nathan RJ, McMahon TA (1996) Hydrological recipes: estimation techniques in Australian hydrology. Cooperative Research Centre for Catchment Hydrology, Canberra

  • Gunn RH, Richardson DP (1979) The nature and possible origins of soluble salts in deeply weathered landscapes of Eastern Australia. Aust J Soil Res 17:197–215

    Google Scholar 

  • Hem JD (1982) Conductance: a measure of dissolved ions. In: Minear RA, Keith LH (eds) Water analysis, vol 1, Inorganic species, part 1. Academic Press, New York

    Google Scholar 

  • Henschke CJ (1997) Dryland salinity management in the Mt Lofty ranges. 254, Primary industries South Australia

  • Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid ground water system: Murray Basin, Australia. Mar Freshw Res 52:41–52

    Article  Google Scholar 

  • HYDSYS (1992) Time series data management program. Hydsys Ltd, Canberra

  • IAEA (International Atomic Energy Agency) (2001) Global network of isotopes in precipitation online database. http://www.isohis.iaea.org/. Accessed 2002

  • Jolly I, Walker G, Stace P, van der Wel B, Leaney R (2000) Assessing the impacts of dryland salinity on South Australia’s water resources. 9/00, CSIRO Land and Water, Adelaide

  • Jolly I, Williamson DR, Gilfedder M, Walker GR, Morton R, Robinson G, Jones H, Zhang L, Dowling TI, Dyce P, Nathan RJ, Nandakumar N, Clarke R, McNeill V (2001) Historical stream salinity trends and catchment salt balances in the Murray-Darling Basin, Australia. Mar Freshw Res 52:53–63

    Article  Google Scholar 

  • Jones BF, Hanor JS, Evans WR (1994) Sources of dissolved salts in the central Murray Basin, Australia. Chem Geol 111:135–154

    Article  Google Scholar 

  • Kayaalp AS (2001) Application of rainfall chemistry and isotope data to hydro-meteorological modelling. PhD Thesis, The Flinders University of South Australia, Adelaide

  • Lyne V, Hollick M (1979) Stochastic time-variable rainfall-runoff modelling. I.E. Australia National Conference Publication No. 79/10, Institute of Engineers Australia, Canberra

  • Milnes AR, Bourman RP, Fitzpatrick RW (1987) Petrology and mineralogy of ‘laterites’ in southern and eastern Australia and southern Africa. Chem Geol 60:237–250

    Article  Google Scholar 

  • Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473

    Article  Google Scholar 

  • Pannewig MK (1992) Electromagnetic induction salinity surveys in a fractured rock system. BSc (Honours) Thesis, University of Adelaide, Adelaide

  • Peck AJ, Hurle DH (1973) Chloride balance of some farmed and forested catchments in southwestern Australia. Water Resour Res 9(3):648–657

    Google Scholar 

  • Primary Industries and Resources of South Australia (PIRSA) 2002. Water Quality monitoring at Brukunga. EPA Licence No 10577, Condition 100-2. Regulation and Rehabilitation Unit Mineral Resources Group. Office of Minerals & Energy Resources, PIRSA, Adelaide, pp 72

  • Radke BM, Watkins BM, Ivkovic KW, Cresswell RG, Bauld J (2000) A Groundwater Quality Assessment of the Upper Onkaparinga Region, Southern Mt Lofty Ranges, South Australia. Bureau of Rural Sciences, ACT, Canberra

  • Salama RB, Farrington P, Bartle GA, Watson GD (1993) The chemical evolution of ground water in a first-order catchment and the process of salt accumulation in the soil profile. J Hydrol 143:233–258

    Article  Google Scholar 

  • Schofield NJ, Ruprecht JK (1989) Regional analysis of stream salinization in southwest Western Australia. J Hydrol 112:19–39

    Article  Google Scholar 

  • Smitt C, Herczeg A, Davies P, Cox J (2004) Identifying sources of salt and its mobilization processes in the eastern Mt Lofty Ranges, South Australia, Conference Proceedings: The 9th Murray-Darling Basin Ground water Workshop, Bendigo, February 2004

  • Walker G, Cox J, Wilford J, Smitt C (2004) South Australian salt mapping and salinity management support program Bremer Hills site. Final report. CSIRO Land and Water Client Report, CISRO, Clayton, South VIC, pp 18

  • Williamson DR, van der Wel B (1991) Quantification of the impact of dryland salinity on water resources in the Mt Lofty Ranges, SA, Proceedings of the International Hydrology and Water Resources Symposium. The Institution of Engineers Australia National Conference Publication No. 91/22, Institution of Engineers Australia, Perth, pp 48–52

  • Williamson DR, Stokes RA, Ruprecht JK (1987) Response of input and output of water and chloride to clearing for agriculture. J Hydrol 94:1–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig T. Simmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulsen, D.L., Simmons, C.T., Le Galle La Salle, C. et al. Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeol J 14, 1339–1359 (2006). https://doi.org/10.1007/s10040-006-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0065-9

Keywords

Navigation