Skip to main content

Advertisement

Log in

Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater abstraction has resulted in spring flow and groundwater base-flow declines in the Hillsborough River system of central Florida, USA. These declines have resulted in reduction of inflows to the Tampa city reservoir as well as likely adverse environmental effects on riverine and estuarine biota. Causes evaluated for the declines include effects of groundwater development, reduced rainfall, and land alterations. The karstic, heterogeneic nature of the area renders groundwater flow modeling an ineffective method for overall evaluation. Therefore, the evaluation of these declines is accomplished through the systematic use of parametric and nonparametric statistical techniques. These techniques include contingency table analysis, linear regression, Kendall-Theil and Mann-Kendall trend analysis, locally weighted regression, Pearson correlation, Kendall-tau correlation, Spearman correlation, runs test, Student’s t test, and the Kruskall-Wallis test. Data evaluated include groundwater withdrawals, rainfall, base flow, streamflow, stream stage, spring flow, and groundwater levels. Additional methods used include double mass analysis, base flow separation, a low-stage trend analysis, data visualization techniques, and water level change maps. The methodical application of these analyses and techniques to the hydrologic and climatic data yields the conclusion that the primary factor causing the spring flow and base-flow declines is lowered groundwater levels caused by over-abstraction.

Résumé

L’exploitation des eaux souterraines a induit la baisse du régime des sources et du débit d’étiage lié aux nappes, dans le système de la rivière de la Hillsborough, au centre de la Floride. Ces baisses ont eu pour résultats la réduction de l’afflux vers le réservoir de la ville de Tampa, ainsi que des effets environnementaux sur les biota des rives et de l’estuaire. Les causes de ces baisses - pompages, diminution des pluies, dégradation du sol – ont été estimées. La nature karstique et hétérogène de la zone rend la modélisation inapte à une évaluation globale. Dés lors, ces baisses sont évaluées grâce à l’application systématique de techniques statistiques paramétriques et non paramétriques. Ces techniques incluent des analyses par table de contingence, régression linéaire, tendances de Kendall-Theill et Mann-Khendall, Régression Polynômiale locale, corrélation de Pearson, corrélation de Kendall-tau, corrélation de Spearman, Runs test, test de Student, et test de Kruskall-Wallis. Les données évaluées sont les rabattements, les pluies, les débits d’étiage, autres débits, débits des sources et le niveau des nappes. D’autres méthodes utilisées incluent l’analyse par double masse, le découpage des hydrographes d’étiage, l’analyse des niveaux de base, différentes techniques de visualisation des données et enfin différentes cartes de niveau des eaux. L’application méthodologique de ces analyses et de ces techniques aux données climatiques et hydrologiques, conduit à la conclusion que le facteur primaire causant les baisses des débits et des niveaux, est la baisse des niveaux des nappes induit pas la sur-exploitation.

Resumen

La extacción de agua subterránea ha ocasionado descensos en el flujo de base de agua subterránea y en el flujo de manantial en el sistema del Río Hillsborough en el centro de Florida. Estos descensos han ocasionado la reducción de la entrada de flujos en el reservorio de la ciudad de Tampa así como también efectos ambientales negativos en la biota de los estuarios y ríos. Las causas que se han evaluado para explicar los descensos incluye el desarrollo de aguas subterráneas, reducción en la cantidad de lluvia, y alteraciones en el terreno. La naturaleza kárstica y heterogénea del área hace que el modelizado de flujo de agua subterránea sea un método poco efectivo para la evaluación. Por lo tanto, la evaluación de los descensos se ha llevado a cabo mediante el uso sistemático de técnicas estadísticas paramétricas y no paramétricas. Estas técnicas incluye el análisis de tabla de contingencia, regresión lineal, análisis de tendencias Mann-Kendall y Theil-Kendall, regresión pesada localmente, correlación Pearson, correlación tau-Kendall, correlación Spearman, pruebas de corrida, prueba t-Student, y la prueba Kruskall-Wallis. Los datos evaluados incluye extracciones de agua subterránea, flujo de base, escorrentía, niveles de río, flujo de manantial, y niveles de agua subterránea. Los métodos adicionales utilizados incluye el análisis de doble masa, la separación de flujo base, análisis de tendencia de etapa baja, técnicas de visualización de datos, y mapas de cambio de niveles de agua. La aplicación metódica de estos analisis y técnicas a los datos climáticos e hidrológicos conduce a la conclusión de que el principal factor causante de la disminución del flujo base y del flujo del manantial es el descenso de niveles de agua subterránea ocasionados por sobreexplotación.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bales JD, Pope BF (2001) Identification of changes in streamflow characteristics. J Am Water Res Assoc 37(1):91–104

    Google Scholar 

  • Bredehoeft JD, Papadopulus SS,Cooper HH Jr (1982) Groundwater: the water budget myth in scientific basis of water resource management. National Research Council Geophysics Study Committee, National Academy Press, Washington, DC, pp 51–57

    Google Scholar 

  • Cohen R (1992) Agricultural water use model, AGMOD, Version 2.0. Southwest Florida Water Management District, Brooksville, FL, p 25

    Google Scholar 

  • Davis SN, DeWiest RJM (1966) Hydrogeology. Wiley, New York, p 463

    Google Scholar 

  • Champion KM, DeWitt DJ (2000) Origin of nitrate in ground water discharging from Crystal Springs, Pasco County, Florida. Southwest Florida Water Management District, Brooksville, FL, p 192

    Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York, p 709

    Google Scholar 

  • Duerr AD (2001) Potentiometric surface of the upper Floridan Aquifer, west-central Florida, May 2001. US Geol Surv Open File Report, OF 01-0310, USGS, Reston, VA, p1

  • Florida Board of Conservation (1966) Florida land and water resources, Southwest Florida. Florida Board of Conservation, Division of Water Resources, Tallahassee, FL, p 181

    Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  • Hancock MC, Smith DA (1996) Northern Tampa Bay Water Resource Assessment Project, vol 1, Surface-water/ground-water interrelationships. Southwest Florida Water Management District, Brooksville, FL, p 341

    Google Scholar 

  • Harrison DS, Koo RC (1977) Irrigation methods and equipment for production of citrus in Florida. Institute of Food and Agricultural Sciences Water Resources Council Publication No. 10, Institute of Food and Agricultural Sciences, Gainesville, FL, p 2

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources. Techniques of water resources investigations of the US Geol Surv, Book 4, USGS, Reston, VA, p 510

  • Koo RC (1963) Effects of frequency of irrigations on yield of orange and grapefruit. Proc Florida Horticultur Soc 76:1–5

    Google Scholar 

  • National Agricultural Statistics Service (2000) Database for Florida, http://www.nass.usda.gov/fl/, Accessed 10 June 2000

  • McCuen RH (1989) Hydrologic analysis and design. Prentice-Hall, Englewood Cliffs, NJ, p 867

    Google Scholar 

  • McCuen RH (2003) Modeling hydrologic change. Lewis, New York, p 433

    Google Scholar 

  • Menke CG, Meredith EW, Wetterhall WS (1961) Water resources of Hillsborough County, Florida. Florida Geological Survey Report of Investigations No. 25. Florida Geol Surv, Tallahassee, FL, p 100

  • Miller I, Fruend JE (1985) Probability and statistics for engineers. Prentice-Hall, Englewood Cliffs, NJ, p 432

    Google Scholar 

  • Mills LR, Laughlin CP (1976) Potentiometric surface of the Floridan Aquifer May 1975, and change of potentiometric surface 1969 to 1975, Southwest Florida Water Management District and adjacent areas. US Geol Surv Water Res Inves No. 76–80, USGS, Reston, VA, p 1

  • Parker GG (1975) Water and water problems in the Southwest Florida Water Management District and some possible solutions. Water Res Bull 11(1):1–20

    Google Scholar 

  • Perry RG (1995) Regional assessment of land use nitrogen loading of unconfined aquifers, PhD Thesis, Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, p 229

  • Petts GE, Bickerton MA, Crawford C, Learner DN, Evans D (1999) Flow management to sustain groundwater: dominated stream ecosystems. Hydrol Proc 13:497–513

    Article  Google Scholar 

  • Pride RW (1970) Estimated water use in Florida, 1965. Florida Bureau of Geology Map Series No. 36, Florida Bureau of Geology, Tallahassee, FL, p 1

  • Searcy JK, Hardison CH (1960) Double-mass curves. Manual of hydrology: Part I, General surface water techniques. US Geol Surv Water Supply Paper 1541-B, USGS, Reston, VA, p 66

  • Smajstrla AG, Haman DZ, Zazueta FS (2000) Irrigated acreage in Florida. Institute of Food and Agricultural Sciences Publication AE083, Institute of Food and Agricultural, Gainesville, FL, p 8

  • Smith H, Wood PJ (2002) Flow permanence and macroinvertebrate community variability in limestone spring systems. Hydrobiologia 487(1):45–58

    Article  Google Scholar 

  • SWFWMD (2000) Hillsborough river comprehensive watershed atlas. Southwest Florida Water Management District, Brooksville FL, p 21

    Google Scholar 

  • SWFWMD (2004) Southern water use caution area recovery strategy. Southwest Florida Water Management District, Brooksville FL, p 120

    Google Scholar 

  • Taylor M (1997) Investigation of stream/aquifer response in two Florida watersheds. University of South Florida, Tampa, FL, p 7

    Google Scholar 

  • Theis CV (1940) The source of water derived from wells: essential factors controlling the response of aquifer development. Civil Eng 10(5):277–280

    Google Scholar 

  • Tibbals CH, Andersen W, Laughlin CP (1980) Ground-water hydrology of the Dade city area, Pasco County, Florida, with emphasis on the hydrologic effects of pumping from the Floridan Aquifer. US Geol Surv Water Res Inv No. 80–33, USGS, Reston, VA, p 64

  • US Bureau of Census (2000) United States Census http://www.census.gov. Accessed 20 June 2000

  • US Geological Survey (1971) Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District, May 1971. USGS, Reston, VA, p 1

  • Wolansky RM, Thompson TH (1987) Relation between ground water and surface water in the Hillsborough River Basin, west-central Florida. US Geol SurvWater Res Inv Report 87-4010, USGS, Reston, VA, p 58

  • Yobbi DK (2000) Application of Least-Squares Regression to Ground-Water Flow Modeling, West-Central Florida. US Geol Surv Water Res Inv Report 00-4094, USGS, Reston, VA, p 58

Download references

Acknowledgements

The authors are indebted to Dr. Mark Stewart, Dr. Frederick Paillet, and Dr. Keith Halford for their helpful comments and suggestions. The comments and assistance of the Journal’s Associate Editor Dr. Sarah Kruse and Managing Editor Dr. Mara-Theresia Schafmeister are also very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, K.A., Perry, R.G. Groundwater abstraction impacts on spring flow and base flow in the Hillsborough River Basin, Florida, USA. Hydrogeol J 14, 1252–1264 (2006). https://doi.org/10.1007/s10040-006-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0040-5

Keywords

Navigation