Hydrogeology Journal

, Volume 14, Issue 7, pp 1171–1191 | Cite as

Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers

  • Daniel H. Doctor
  • E. Calvin AlexanderJr
  • Metka Petrič
  • Janja Kogovšek
  • Janko Urbanc
  • Sonja Lojen
  • Willibald Stichler
Report

Abstract

Karst aquifer components that contribute to the discharge of a water supply well in the Classical Karst (Kras) region (Italy/Slovenia) were quantitatively estimated during storm events. Results show that water released from storage within the epikarst may comprise as much as two-thirds of conduit flow in a karst aquifer following rainfall. Principal components analysis (PCA) and end-member mixing analysis (EMMA) were performed using major ion chemistry and the stable isotopes of water (δ18O, δ2H) and of dissolved inorganic carbon (δ13CDIC) to estimate mixing proportions among three sources: (1) allogenic river recharge, (2) autogenic recharge, and (3) an anthropogenic component stored within the epikarst. The sinking river most influences the chemical composition of the water-supply well under low-flow conditions; however, this proportion changes rapidly during recharge events. Autogenic recharge water, released from shallow storage in the epikarst, displaces the river water and is observed at the well within hours after the onset of precipitation. The autogenic recharge end member is the second largest component of the well chemistry, and its contribution increases with higher flow. An anthropogenic component derived from epikarstic storage also impacts the well under conditions of elevated hydraulic head, accounting for the majority of the chemical response at the well during the wettest conditions.

Keywords

Karst Hydrochemistry Stable isotopes Statistical modeling Groundwater/surface-water relations 

Resumen

Se estimaron cuantitativamente, durante eventos lluviosos, los componentes de un acuífero kárstico que contribuyen a la descarga de un pozo de abastecimiento de agua en la región Kras (Italia/Eslovenia). Los resultados muestran que el agua liberada del reservorio dentro de la zona epikárstica puede comprender hasta dos tercios del flujo en conductos en un acuífero kárstico después de la lluvia. Se realizaron un Análisis de Componentes Principales (PCA) y un Análisis de Mezcla de Miembros Extremos (EMMA) usando química de iones y los isótopos estables del agua (δ18O, δ2H) y carbono inorgánico disuelto (δ13CDIC) para estimar las proporciones de mezcla entre las tres fuentes: (1) recarga de río alogénico, (2) recarga autogénica, y (3) un componente antropogénico almacenado en el epikarst. La composición química del agua del pozo de abastecimiento está influenciada principalmente por el río hundido bajo condiciones de flujo escaso; sin embargo, esta proporción cambia mucho durante eventos de recarga. La recarga de agua autogénica, liberada del almacenamiento somero en el epikarst, desplaza el agua de río y se detecta en el pozo a pocas horas después del inicio de la lluvia. La recarga autogénica del miembro extremo es el segundo componente más grande de la química del agua y su contribución se incremente con flujos altos. Un componente antropogénico derivado del almacenamiento epikárstico también impacta el pozo bajo condiciones de elevada presión hidráulica explicando la mayor parte de la respuesta química en el pozo durante las condiciones más húmedas.

Résumé

La composante des aquifères karstiques contribuant au débit des puits d’alimentation en eau potable dans la région de Kras (Italie / Slovénie) a été estimée quantitativement durant les évènements de crues. Les résultats montrent que l’eau relarguée par l’épikarst peut contenir jusqu’aux deux-tiers du débit du conduit karstique, après un évènement pluvieux. Une analyse en composante principale (PCA) et une analyse EMMA (End-Member Mixing Analysis) ont été réalisées en utilisant les ions majeurs et les isotopes stables de l’eau (δ18O, δ2H) et de la matière organique (δ13CDIC) pour estimer les proportions de mélange entre les trois sources (1) la recharge allogénique par la rivière (2) la recharge autogénique (3) la composant anthropique de l’épikarst. La rivière influence essentiellement la composition de chimique des puits lors des basses eaux; par contre la proportion change rapidement lors des évènements de recharge. La recharge autogénique, en provenance des eaux de l’épikarst superficiel, déplace les eaux de la rivière et est observée dans les heures qui suit le début de la précipitation. La recharge autogénique est la deuxième plus importante composante chimique de l’eau du puits, et son influence grandit avec le débit. La composante anthropogénique est dérivée du réservoir épikarstique influençant le puits lorsque la charge hydraulique est la plus haute, et justifiant la majorité des réponses chimiques du puits durant les conditions les plus humides.

References

  1. Andreo B, Carrasco F (1999) Application of geochemistry and radioactivity in the hydrogeological investigation of carbonate aquifers (Sierra Blanca and Mijas, Spain). Appl Geochem 14:283–299CrossRefGoogle Scholar
  2. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110CrossRefGoogle Scholar
  3. Azienda Comunale Elettricità Gas ed Acqua (ACEGA) Trieste (1988) Il problema dell’acqua nella provincia di Trieste (The problem of water in the province of Trieste). Arti Grafiche Smolars, Trieste, p 28Google Scholar
  4. Burns DA, McDonnell JJ, Hooper RP, Peters NE, Freer JE, Kendall C, Beven K (2001) Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrol Proc 15:1903–1924CrossRefGoogle Scholar
  5. Cancian G (1987) L’idrologia del Carso goriziano-triestino tra l’Isonzo e le risorgive del Timavo (The hydrology of the Gorizia-Trieste karst between the Isonzo and the Timavo springs). Studi Trentini Sci Natur 64:77–98Google Scholar
  6. Cancian G (1988) Significato idrologico della concentrazione di ossigeno e anidride carbonica nelle acque sotteranee tra il lago Doberdò e le risorgive del Timavo (Hydrologic significance of the concentrations of oxygen and carbon dioxide in the ground water between Lake Doberdò and the Timavo springs). Mondo Sottorraneo 12(1–2):11–29Google Scholar
  7. Christophersen N, Hooper RP (1992) Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem. Water Resour Res 28:99–107CrossRefGoogle Scholar
  8. Civita M, Cucchi F, Eusebio A, Garavoglia S, Maranzana F, Vigna B (1995) The Timavo hydrogeologic system: an important reservoir of supplementary water resources to be reclaimed and protected. Proc Int Symp “Man on Karst”, Postojna, 1993. Acta Carsolog 24:169–186Google Scholar
  9. Cucchi F, Pirini Radrizzani C, Pugliese N (1987) The carbonate stratigraphic sequence of the Karst of Trieste (Italy). Proc Int Symp Evolution of Karstic Carbonate Platform: Relation with other Peridadriatic Carbonate Platforms. Mem Soc Geol It 40:35–44Google Scholar
  10. Deines P, Langmuir D, Harmon R (1974) Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim Cosmochim Acta 38:1147–1164CrossRefGoogle Scholar
  11. Desmarais K, Rojstaczer S (2002) Inferring source waters from measurements of carbonate spring response to storms. J Hydrol 260:118–134CrossRefGoogle Scholar
  12. Doctor DH (2002) The Hydrogeology of the Classical Karst (Kras) Aquifer of southwestern Slovenia. PhD Thesis, University of Minnesota, Minneapolis, MNGoogle Scholar
  13. Doctor DH, Alexander EC Jr (2005) Interpretation of water chemistry and stable isotope data from a karst aquifer according to flow regimes identified through hydrograph recession analysis. In: Kuniansky EL (ed) US geological survey scientific investigations report 2005–5160. USGS, Reston, VA, pp 82–92Google Scholar
  14. Doctor DH, Lojen S, Horvat M (2000) A stable isotope investigation of the Classical Karst aquifer: evaluating karst ground water components for water quality preservation. Acta Carsolog 29(1):52–79Google Scholar
  15. Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst system (southeastern France). J Hydrol 279:262–274CrossRefGoogle Scholar
  16. Epstein S, Mayeda TK (1953) Variations of 18O of waters from natural sources. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  17. Ford DC, Williams PW (1989) Karst geomorphology and hydrology. Hyman, LondonGoogle Scholar
  18. Flora O, Longinelli A (1989) Stable isotope hydrology of a classical karst area, Trieste, Italy. In: Isotope Techniques in the Study of Fractured and Fissured Rocks, International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  19. Galli M (1999) Timavo: Esplorazione e studi (Timavo: exploration and studies). Supplemento no. 23 di Atti e Memorie della Commissione Grotte “Eugenio Boegan”, Trieste, p 195Google Scholar
  20. Gehre M, Hoefling R, Kowski P (1996) Methodical studies for D/H-isotope analysis: a new technique for the direct coupling of sample preparation to an IRMS. Isot Environ Health Stud 32:335–340Google Scholar
  21. Gemiti F, Licciardello M (1977) Indagini sui rapporti di alimentazione delle acque del Carso triestino e goriziano mediante l’utilizzo di alcuni traccianti naturali (Investigations of the relations of waters feeding ground water of the Gorizia and Trieste karst using some natural tracers). Annali Gruppo Grotte Ass 30° Ott Trieste 6:43–61Google Scholar
  22. Gemiti F (1984a) La portata del Timavo alle risorgive di S. Giovanni di Duino (The discharge of the Timavo at the springs of San Giovanni di Duino). Annali Gruppo Grotte Ass 30°Ott Trieste 7:23–41Google Scholar
  23. Gemiti F (1984b) Nuova ed originale prova di marcatura delle acque del Timavo (A new and original trace of the water of the Timavo). Annali Gruppo Grotte Ass 30°Ott Trieste 7:43–62Google Scholar
  24. Gemiti F (1994) Indagini idrochemiche alle risorgive del Timavo (Hydrochemical investigations of the Timavo springs). Atti e Memorie della Commissione Grotte “E. Boegan” 30:73–83Google Scholar
  25. Hess JW, White WB (1988) Storm response of the karstic carbonate aquifer of southcentral Kentucky. J Hydrol 99:232–235CrossRefGoogle Scholar
  26. Kranjc A (ed) (1997) Slovene Classical Karst: “Kras”. Institut za raziskovanja krasa ZRC SAZU, Postojna, p 254Google Scholar
  27. Krivic P (1981) Etude hydrodynamique d’un aquifère karstique côtiere: le Kras de Slovenie, Yougoslavie (Hydrodynamic study of a coastal karst aquifer: the Kras of Slovenia, Yugoslavia). PhD Thesis, Accadèmie Montpellier, Univ. Sci. Tech. Languedoc, FranceGoogle Scholar
  28. Krivic P (1982) Variations naturelles de niveau piézométrique d’un aquifère kartsique (Natural variations of piezometric level of a karstic aquifer). Geologija 25(1):129–150Google Scholar
  29. Krokos A (1998) Ulteriori studi geochimico-isotopici su alcune sorgenti carsiche costiere dell’area triestina: considerazioni idrologico-ambientali (Further geochemical-isotopic studies of some coastal karstic springs in the area of Trieste: hydrologic-environmental considerations). Bachelor’s Thesis, University of Trieste, ItalyGoogle Scholar
  30. Laaksoharju M, Skårman C, Skårman E (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Appl Geochem 14:861–871CrossRefGoogle Scholar
  31. Lakey B, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32:721–731CrossRefGoogle Scholar
  32. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32(2):114–123CrossRefGoogle Scholar
  33. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA: using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143CrossRefGoogle Scholar
  34. Longinelli A (1988) Stable isotope hydrology of the classical Karst area, Trieste, Italy. Rendi Soc Ital Mineral Petrol 43:1175–1183Google Scholar
  35. Maloszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow system in a karstic-fissured-porous aquifer, Schneealpe, Austria, by modeling of environmental 18O and 3H isotopes. J Hydrol 256:48–59CrossRefGoogle Scholar
  36. Melloul A, Collin M (1992) The ‘principal components’ statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. J Hydrol 140:49–73CrossRefGoogle Scholar
  37. Mook WG, Brommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  38. Mosetti F, D’Ambrosi C (1963) Alcune ricerche preliminari in merito a supposti legami di alimentazione fra il Timavo e l’Isonzo (Some preliminary research regarding a supposed connection between the Timavo and the Isonzo). Boll Geograf Teor Appl 5(17):69–84Google Scholar
  39. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report. USGS, Reston, VA, pp 99–4259Google Scholar
  40. Perrin J, Jeannin P-Y, Zwahlen F (2003) Epikarst storage in a karst aquifer: a conceptual model based on isotope data, Milandre test site: Switzerland. J Hydrol 279:106–124CrossRefGoogle Scholar
  41. Petrič M, Kogovšek J (2000) Guide-booklet for the excursion of the 7th COST Action 621 Management Committee and Working Groups meeting, Postojna, Slovenia. Karst Research Institute ZRC-SAZU, PostojnaGoogle Scholar
  42. Reyment R, Jöreskog KG (1993) Applied factor analysis in the natural sciences. Cambridge University Press, New York, p 371Google Scholar
  43. Scanlon BR, Thrailkill J (1987) Chemical similarities among physically distinct spring types in a karst terrain. J Hydrol 89:259–279CrossRefGoogle Scholar
  44. SPSS Inc (2001) SPSS for Windows, Release 11.0.1, standard version. SPSS Inc., Chicago, ILGoogle Scholar
  45. Staniaszek P, Halas S (1986) Mixing effects of carbonate dissolving waters on chemical and 13C/12C compositions. Nordic Hydrol 17:93–114Google Scholar
  46. Stetzenbach KJ, Hodge VF, Guo C, Farnham KH, Johannesson KH (2001) Geochemical and statistical evidence of deep carbonate ground water within overlying volcanic rock aquifers/aquitards of southern Nevada, USA. J Hydrol 243:254–271CrossRefGoogle Scholar
  47. Timeus G (1928) Nei misteri del mondo sotterraneo: risultati delle ricerche idrogeologiche sul Timavo 1895–1914, 1918–1927 (Some mysteries of the underground world: results of the hydrogeologic research of the Timavo 1895–1914, 1918–1927). Atti e Mem Comm Grotte “E. Boegan” 22:117–133Google Scholar
  48. Urbanc J, Kristan S (1998) Isotope investigation of the Brestovica water source during an intensive pumping test. RMZ Mater Geoenviron 45(1–2):187–191Google Scholar
  49. Vesper DJ, White WB (2004) Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA. Hydrogeol J 12:135–143CrossRefGoogle Scholar
  50. White WB (1988) Geomorphology and hydrology of Karst terrains. Oxford University Press, New York, p 464Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Daniel H. Doctor
    • 1
    • 6
  • E. Calvin AlexanderJr
    • 1
  • Metka Petrič
    • 2
  • Janja Kogovšek
    • 2
  • Janko Urbanc
    • 3
  • Sonja Lojen
    • 4
  • Willibald Stichler
    • 5
  1. 1.Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Karst Research InstitutePostojnaSlovenia
  3. 3.Geological Survey of SloveniaLjubljanaSlovenia
  4. 4.Jožef Stefan Research InstituteLjubljanaSlovenia
  5. 5.GSF Institute of HydrologyNeuherbergGermany
  6. 6.US Geological SurveyMenlo ParkUSA

Personalised recommendations