Skip to main content
Log in

Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Using entropy theory, a methodology was developed for the evaluation and redesign of groundwater quality monitoring wells in the Gaza Strip in Palestine. Essential to the methodology is the development of a Transinformation Model (TM) which yields the amount of information transfer and the dependency between the wells as a function of distance. The TM parameters, such as the minimum transinformation and the range, were employed for evaluating the network which revealed that most of the distances between wells were less than the range. It also indicated that a high percentage of redundant information existed in the network. Therefore, the network was reduced by superimposing a square pattern over the monitored area and selecting one well per square block in a stratified pattern. The methodology was tested using the chloride data collected from 1972–2000 from 417 groundwater quality monitoring wells in the Gaza Strip. The number of the groundwater quality monitoring wells in the Gaza Strip was reduced by 53%, while there was 26% redundant information based on the minimum existing distance between wells. This methodology is meant to help monitor the groundwater quality (salinity) in the Gaza Strip.

Résumé

En utilisant la théorie de l’entropie on a développé une méthodologie pour évaluer et projeter un système des forage de surveillance de la qualité des eaux souterraines dans la bande de Gaza en Palestine. L’essentiel de la méthodologie est représenté par un modèle de transformation (MT) qui rend la quantité de transfert de l’information et d’interférence entre les forages en fonction de distance. Pour évaluer le système on a utilisé les paramètres du MT comme la transformation minimale et l’écart qui ont mis en évidence que la plupart des distances entre les forages soient inférieure á l’écart. De plus le modèle a indiqué un pourcentage élevé d’information redondante dans le réseau. En conséquence le réseau a été réduit en surimposant une structure en carrés sur la zone surveillée et en sélectionnant un seul forage dans chaque block carré dans une structure stratifiée. La méthodologie a été vérifiée pour les donnés de la concentrations en chlorures, collectées dans un système de 417 forages de monitoring de la qualité des eaux dans la bande de Gaza. Cette méthodologie peut bien aider la surveillance de la qualité des eaux souterraine de la bande de Gaza.

Resumen

Se desarrolló una metodología para la evaluación y rediseño de uno pozos de monitoreo de calidad en agua subterránea, en la Franja de Gaza en Palestina, mediante el uso de la teoría de la entropía. Para la metodología es esencial el desarrollo de un Modelo de Transinformación (MT), el cual entrega la cantidad de transferencia de información y la dependencia entre los pozos, como una función de la distancia. Los parámetros del MT, tales como la transinformación mínima y el rango, fuero usados para evaluar la red, lo cual reveló que muchas de las distancias entre pozos eran menores que el rango. Esto también indicó que existía un alto porcentaje de información redundante en la red. Por lo tanto, la red fue reducida mediante la sobreposición de un patrón de forma cuadrada, sobre el área monitoreada y seleccionando un pozo por cada celda cuadrada en un patrón estratificado. La metodología fue probada utilizando los datos de cloruros colectados entre 1972–2000, a partir de 417 pozos de monitoreo de calidad en agua subterránea en la franja de Gaza. Se espera que esta metodología ayude a monitorear la salinidad del agua subterránea en la Franja de Gaza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angulo M, Tang W (1999) Optimal groundwater detection monitoring system design under uncertainty. J Geotech Geoenviron Eng, ASCE 125(6):510–517

    Article  Google Scholar 

  • Bueso MC, Angulo JM, Alonso FJ (1998) A state-space model approach to optimum spatial sampling design based on entropy. Environ Ecol Stat 5:29–44

    Article  Google Scholar 

  • Caselton WF, Husain T (1980) Hydrologic network: information transmission. J Water Resour Plann Manag Div, ASCE 106(WR2):503–529

    Google Scholar 

  • Christakos G, Olea RA (1988) A multiple objective optimal exploration strategy. Math Comput Model 11(4):413–418

    Article  Google Scholar 

  • Cunha MC (1999) On solving aquifer management problems with simulated annealing algorithms. Water Resour Manag 13(3):153–169

    Article  Google Scholar 

  • Everett LG (1980) Groundwater monitoring. General Electric Company, Schenectady, New York

    Google Scholar 

  • Gao H, Wang J, Zhao P (1996) The update Kriging variance and optimal sampling design. Math Geol 28(3):295–313

    Article  Google Scholar 

  • Gokhale D, Kullback S (1978) The information in Contingency Tables. Marcel Dekker Inc., New York

    Google Scholar 

  • Harmancioglu NB, Alpaslan N (1992) Water quality monitoring network design. Water Resour Bull 28(1):179–192

    Google Scholar 

  • Harmancioglu NB, Fistikoglu O, Ozkul SD, Singh VP, Alpaslan N (1999) Water Quality Monitoring Network Design. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Harmancioglu NB, Singh VP (1998) Entropy in environmental and water resources. In: Herscly RW, Fairbridge RW (eds) Encyclopaedia of hydrology and water resources. Dordrecht, Kluwer

    Google Scholar 

  • Hsueh YW, Rajagopal R (1988) Modelling groundwater quality decisions. Groundwater Monitor Rev 8(4):121–134

    Google Scholar 

  • Husain T (1989) Hydrologic uncertainty measure and network design. Water Resour Bull 25(3):527–534

    Google Scholar 

  • Krastanovic PF, Singh VP (1992) Evaluation of rainfall networks using entropy: II. applications. Water Resour Manag 6:295–314

    Article  Google Scholar 

  • Loaiciga H, Charbeneau JR, Everett GL, Fogg EG, Hobbs FB, Rouhani S (1992) Review of groundwater quality monitoring network design. J Hydr Eng, ASCE 118(1):11–37

    Google Scholar 

  • Mahar PS, Datta B (1997) Optimal monitoring and groundwater pollution source identification. J Water Resour Plann Manag, ASCE 23(4):199–207

    Google Scholar 

  • Massmann J, Freeze RA, Smith L, Sperling T, James B (1991) Hydrogeological decision analyses: 2. Applications to groundwater contamination. Ground Water 29(4):536–548

    Article  Google Scholar 

  • Metcalf & Eddy (2000a) Coastal Aquifer Management Program, Final Report: Modelling of Gaza Strip Aquifer. The program is funded by US Agency for International Development (USAID) and owned by the Palestinian Water Authority (PWA). Gaza, Palestine

  • Metcalf & Eddy (2000b) Coastal Aquifer Management Program, Aquifer Monitoring Plan. The program is funded by US Agency for International Development (USAID) and owned by the Palestinian Water Authority (PWA). Gaza, Palestine

  • Meyer PD, Valcchoni AJ, Eheart JW (1994) Monitoring network design to provide initial detection of groundwater contamination. Water Resour Res 30(9):2647–2659

    Article  Google Scholar 

  • Mogheir Y (2003) Assessment and Redesign of Groundwater Quality Monitoring Networks Using the Entropy Theory—Gaza Strip Case Study. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 319 pp

  • Mogheir Y, de Lima JLMP, Singh VP (2003a) Applying the entropy theory for describing the spatial structure of groundwater regionalized variables (EC and Chloride). In: Neves MV, Neves ACV (eds) Proc International Symposium “Environment 2010: Situation and Perspectives for the European Union”, G 01

  • Mogheir Y, Singh VP, de Lima JLMP (2003b) Redesigning the Gaza Strip groundwater quality monitoring network using entropy. In Singh VP, Yadava RY (eds.), Groundwater pollution, Allied Publishers Pvt. Limited, New Delhi, India 5:315–331

  • Mogheir Y, de Lima JLMP, Singh VP (2004a) Characterizing the spatial variability of groundwater quality using the entropy theory: I. Synthetic data. Hydrol Process, 18:2165–2179

    Article  Google Scholar 

  • Mogheir Y, de Lima JLMP, Singh VP (2004b) Characterizing the spatial variability of groundwater quality using the entropy theory: II. Case study from Gaza Strip. Hydrol Process, 18:2579–2590

    Article  Google Scholar 

  • Mogheir Y, Singh VP (2002a) Application of information theory to groundwater quality monitoring networks. Water Resour Manag 16(1):37–49

    Article  Google Scholar 

  • Mogheir Y, Singh VP (2002b) Specification of information needs for groundwater resources management and planning in developing country: Gaza Strip case study. In: Sherif MM, Singh VP, Al-Rashed M (eds) Proceedings Water Resources Management in Arid Regions Conference (2) 3–20

  • Motulsky HJ (1999) Analysing Data with GraphPad Prism. GraphPad Software. San Diego, http://www.graphpad.com

    Google Scholar 

  • Olea RA (1984) Sampling design optimisation for spatial functions. Math Geol 16(4):369–393

    Article  Google Scholar 

  • Olea RA (1999) Geostatistics for engineers and earth scientists. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Ozkul S, Harmancioglu NB, Singh VP (2000) Entropy-based assessment of water quality monitoring networks. J Hydrol Eng, ASCE 5:90–100

    Article  Google Scholar 

  • Reichard EG, Eves JS (1989) Assessing the value of hydrogeologic information for risk-based action decision. Water Resour Res 25(7):1451–1460

    Google Scholar 

  • Rouhani S (1985) Variance reduction analysis. Water Resour Res 21:837–846

    Article  Google Scholar 

  • Rouhani S, Hall TJ (1988) Geostatistical schemes for groundwater sampling. J Hydrol 103:85–102

    Article  Google Scholar 

  • Sophocleous M (1983) Groundwater observation network design for the Kansas groundwater management districts, USA. J Hydrol 61:371–389

    Article  Google Scholar 

  • Sounga JO (1976) Entropy principle applied to the rainfall-runoff process. J Hydrol 30:81–94

    Article  Google Scholar 

  • Wang M, Zheng C (1997) Optimal remediation policy selection under general conditions. Ground Water 35(5):757–764

    Article  Google Scholar 

  • Wu S, Zidek VJ (1992) An entropy-based analysis of data from selected NADP/NTN network sites for 1983–1986. Atmos Environ 26A(11):2089–2103

    Google Scholar 

  • Yfantis EA, Flatman GT, Behar JV (1987) Efficiency of Kriging estimation for square, triangular and hexagonal grids. Math Geol 19(3):183–205

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the Foundation for Science and Technology of the Portuguese Ministry of Science and Higher Education for sponsoring the fellowship (Reference: SFRH/BD/6089/2001). The fellowship was provided for the first author’s PhD programme entitled “Quantification of Information for Groundwater Quality Networks”. The programme was undertaken at the Department of Civil Engineering, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. M. P. de Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogheir, Y., Singh, V.P. & de Lima, J.L.M.P. Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeol J 14, 700–712 (2006). https://doi.org/10.1007/s10040-005-0464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0464-3

Keywords:

Navigation