Skip to main content

Advertisement

Log in

Extraterrestrial hydrogeology

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Subsurface water processes are common for planetary bodies in the solar system and are highly probable for exoplanets (planets outside the solar system). For many solar system objects, the subsurface water exists as ice. For Earth and Mars, subsurface saturated zones have occurred throughout their planetary histories. Earth is mostly clement with the recharge of most groundwater reservoirs from ample precipitation during transient ice- and hot-house conditions, as recorded through the geologic and fossilized records. On the other hand, Mars is mostly in an ice-house stage, which is interrupted by endogenic-driven activity. This activity catastrophically drives short-lived hydrological cycling and associated climatic perturbations. Regional aquifers in the Martian highlands that developed during past, more Earth-like conditions delivered water to the northern plains. Water was also cycled to the South Polar Region during changes in climate induced by endogenic activity and/or by changes in Mars’ orbital parameters. Venus very likely had a warm hydrosphere for hundreds of millions of years, before the development of its current extremely hot atmosphere and surface. Subsequently, Venus lost its hydrosphere as solar luminosity increased and a run-away moist greenhouse took effect. Subsurface oceans of water or ammonia-water composition, induced by tidal forces and radiogenic heating, probably occur on the larger satellites Europa, Ganymede, Callisto, Titan, and Triton. Tidal forces operating between some of the small bodies of the outer solar system could also promote the fusion of ice and the stability of inner liquid-water oceans.

Résumé

Les processus de subsurface impliquant l’eau sont communs pour les corps planétaires du système solaire et sont très probables sur les exoplanètes (planètes en dehors du système solaire). Pour plusieurs objets du systèmes solaire, l’eau de subsurface est présente sous forme de glace. Pour la Terre et Mars, les zones saturées de subsurface apparaissent à travers toute leur histoire planétaire. La Terre est particulièrement clémente avec la recharge des réservoirs, avec de amples précipitations, des conditions glaciaires et de fortes chaleurs, comme l’atteste les enregistrements géologiques et paléontologiques. D’un autre côté, Mars se trouve dans une phase essentiellement glaciaire, qui est interrompue par des activités contraintes par les phénomènes endogéniques. Cette activité conduit de manière catastrophique à des cycles hydrologiques et à des perturbations climatiques brutaux. Les aquifères régionaux dans les haute terres martiennes qui se sont formés dans des conditions similaires aux conditions terrestres, alimentent les plaines du Nord. L’eau a également été déplacée vers le Pôle Sud martien durant des changements marqués par une forte activité endogénique et une modification des paramètres de l’orbite de Mars. Venus possèdait vraisemblablement une hydrosphère chaude durant des millions d’année, avant le développement de son atmosphère et sa surface particulièrement chaude. Par après Venus a perdit son hydrosphère alors que la luminosité solaire augmentait et qu’une humidité liée à un effet de serre s’installait. Les océans de subsurface d’eau ou d’eau ammoniacale, induits par les forces de marée et le chauffage radiogénique, apparaissent probablement sur les satellites les plus importants (Europa, Ganymede, Callisto, Titan, Triton). Les forces de marée entre les petits corps externes du système solaire peuvent également occasionner la fusion de glace et la stabilité des océans internes d’eau liquide.

Resumen

Los procesos hídricos subsuperficiales son comunes en cuerpos planetarios del sistema solar y son altamente probables para exoplanetas (planetas fuera del sistema solar). Para muchos cuerpos del sistema solar, el agua subsuperficial existe como hielo. Para la Tierra y Marte han ocurrido zonas saturadas subsuperficiales a través de sus historias planetarias. La Tierra es principalmente generosa con la recarga de la mayoría de reservorios de aguas subterráneas a partir de amplia precipitación reconocida en condiciones transitorias calientes y heladas, tal y como aparece en los registros fósiles y geológicos. Por otro lado, Marte se encuentra principalmente en una etapa de cámara de hielo la cual es interrumpida por actividad de tipo endogénico. Esta actividad pone en funcionamiento catastróficamente ciclos hidrológicos de vida corta y perturbaciones climáticas asociadas. Acuíferos regionales en las montañas de Marte que se desarrollaron en el pasado en condiciones similares a la Tierra distribuyen agua a las planicies del norte. El agua ha sido transportada hacia el sur de la región polar durante cambios en el clima inducidos por actividad endogénica y/o cambios en los parámetros orbitales de Marte. Venus muy probablemente tuvo una hidrósfera caliente durante cientos de millones de años, antes de que se desarrollara su atmósfera y superficie actual extremadamente caliente. Subsecuentemente, Venus perdió su hidrósfera a medida que la luminosidad solar aumentó y un efecto de invernadero húmedo escapatorio se llevó a cabo. Océanos subsuperficiales de composición agua o amoniaco-agua, inducidos por fuerzas de marea y calentamiento radiogénico, probablemente ocurren en los satélites más grandes como Europa, Ganimeda, Callisto, Titan y Triton. Las fuerzas de marea que operan entre los cuerpos pequeños del sistema solar externo podrían también promover la fusión de hielo y la estabilidad de líquido interno-aguas de los océanos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe Y, Matsui T (1988) Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot proto-ocean on Earth. J Atmos Sci 45(21):3081–3101

    Google Scholar 

  • Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659–1662

    Google Scholar 

  • Anderson JD, Schubert G, Jacobson RA, Lau EL, Moore WB, Sjogren WL (1998) Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281:2019–2022

    Google Scholar 

  • Anderson JD, Jacobsen RA, McElrath TP, Schubert G, Moore WB, Thomas PC (2001) Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153:157–161

    Google Scholar 

  • Baker VR (1982) The channels of Mars, University of Texas Press, Austin

    Google Scholar 

  • Baker VR (1993) Extraterrestrial geomorphology: Science and philosophy of Earthlike planetary landscapes. Geomorphology 7:9–35

    Google Scholar 

  • Baker VR (2001) Water and the Martian landscape. Nature 412:228–236

    Google Scholar 

  • Baker VR, Milton DJ (1974) Erosion by catastrophic floods on Mars and Earth. Icarus 23:27–41

    Google Scholar 

  • Baker VR, Partridge JB (1986) Small Martian valleys: pristine and degraded morphology. J Geophys Res 91:3561–3572

    Google Scholar 

  • Baker VR, Carr MH, Gulick VC, Williams CR, Marley MS (1992a) Channels and valley networks. In: Kieffer HH, Jakosky B, Snyder C (eds) University of Arizona Press, Tucson, pp 493–522

  • Baker VR, Komatsu G, Parker TJ, Gulick VC, Kargel JS, Lweis JS (1992b) Channels and valleys on Venus: preliminary analysis of Magellan data. J Geophys Res 97:13421–13444

    Google Scholar 

  • Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G, Kale VS (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594

    Google Scholar 

  • Baker VR, Maruyama S, Dohm JM (2002) A theory of early plate tectonics and subsequent long-term superplume activity on Mars. Electronic Geosciences 7: (http://lin.springer.de/service/journals/10069/free/conferen/superplu/)

  • Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: The quest for the conditions of life. Springer, Berlin Heidelberg New York, pp 261–284

    Google Scholar 

  • Berman DC, Hartmann WK (2002) Recent fluvial, volcanic, and tectonic activity on the Cerberus plains of Mars. Icarus 159:1–17

    Google Scholar 

  • Boynton WV, Feldman WC, Squyres SW, Prettyman T, Brückner J, Evans LG, Reedy RC, Starr R, Arnold JR, Drake DM, Englert PAJ, Metzger AE, Mitrofanov I, Trombka JI, d’Uston C, Wänke H, Gasnault O, Hamara DK, Janes DM, Marcialis RL, Maurice S, Mikheeva I, Taylor GJ, Tokar R, Shinohara C (2002) Distribution of hydrogen in the near-surface of Mars: evidence for subsurface ice deposits. Science 297:81–85

    Google Scholar 

  • Brown RH., Cruikshank DP, Pendleton Y, Veeder GJ (1997) Surface composition of Kuiper Belt object 1993SC. Science 276:937–939

    Google Scholar 

  • Brown RH, Cruikshank DP, Pendleton Y, Veeder GJ (1998) Identification of water ice on the Centaur 1997 CU26. Science 280:1430–1432

    Google Scholar 

  • Bullock MA, Grinspoon DH (2001) The recent evolution of climate on Venus. Icarus 150:19–37

    Google Scholar 

  • Burr DM, McEwen AS, Sakimoto SE (2002) Recent aqueous floods from the Cerberus Fossae, Mars. Geophys Res Lett 29:DOI:10.1029/2001GL013345

  • Cameron AG, Benz W (1991) The origin of the moon and the single impact hypothesis. Icarus 92:204–216

    Google Scholar 

  • Carlson RW, Anderson MS, Johnson RE, Smythe WD, Hendrix AR, Barth CA, Sonderblom LA, Hansen GB, McCord TB, Dalton JB, Clark RN, Shirley JH, Ocampo AC, Matson DL (1999) Hydrogen peroxide on the surface of Europa. Science 283:2062–2064

    Google Scholar 

  • Carr MH (1996) Water on Mars. Oxford University Press, New York

    Google Scholar 

  • Carr MH et al. (1998) Evidence for a subsurface ocean on Europa. Nature 391:363–365

    Google Scholar 

  • Cassen PM, Peale SJ, Reynolds RT (1982) Structure and thermal evolution of the Galilean satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 93–128

  • Chan MA, Beitler B, Parry WT, Ormö J, Komatsu G (2004) A possible terrestrial analogue for haematite concretions on Mars. Nature 429:731–734

    Google Scholar 

  • Chanover NJ, Anderson CM, McKay CP, Rannou P, Glenar DA, Hillman JJ, Blass WE (2003) Probing Titan’s lower atmosphere with acousto-optic tuning. Icarus 163:150–163

    Google Scholar 

  • Chaplin MF (2003) Professor at School of Applied Science, London South Bank University, http://www.sbu.ac.uk/water/phase.html, Web site accessed 4 February 2005

  • Chyba CF (2000) Energy for microbial life on Europa. Nature 403:381–382

    Google Scholar 

  • Chyba CF, Phillips C (2002) Europa as an abode of life. Orig Life Evol Biosph 32:47–68

    Google Scholar 

  • Clifford SM (1993) A model for the hydrologic and climate behavior of water on Mars, J. Geophys Res 98:10,973–11,016

    Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the Martian Hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154 (1):40–79

    Google Scholar 

  • Cochran AL, Levison HF, Stern SA, Duncan MJ (1995) The discovery of half-sized Kuiper Belt objects using the Hubble Space Telescope. Astrophys J 455:342

    Google Scholar 

  • Cockell CS (1999) Life on Venus. Planet Space Sci 47:1487–1501

    Google Scholar 

  • Consolmagno GJ, Lewis J (1976) Structural and thermal models of icy Galilean satellites. In: Gehrels T (ed) Jupiter University of Arizona Press, Tucson, pp 1035–1051

    Google Scholar 

  • Costard F, Forget F, Mangold N, Peulvast JP (2002) Formation of recent Martian debris flows by melting of near-surface ground ice at high obliquity. Science 295:110–113

    Google Scholar 

  • Cruikshank DP, Roush TL, Owen TC, Geballe TR, de Bergh C, Schmitt B, Brown RH, Bartholomew MJ (1993) Ices on the surface of Triton. Science 261:742–745

    Google Scholar 

  • Dalton JB (2003) Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. Astrobiology 3:771-784

    Google Scholar 

  • Dermott SF, Sagan C (1995) Tidal effects of disconnected hydrocarbon seas on Titan. Nature 374:238–240

    Google Scholar 

  • Dohm JM, Ferris JC, Baker VR, Anderson RC, Hare TM, Strom RG, Barlow NG, Tanaka KL, Klemaszewski JE, Scott DH (2001a) Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J Geophys Res 106:32,943–32,958

    Google Scholar 

  • Dohm JM, Tanaka KL, Hare TM (2001b) Geologic map of the Thaumasia region of Mars. USGS Misc Inv Ser Map I-2650, scale 1:5,000,000

  • Dohm JM, Barlow NG, Williams JP, Baker VR, Anderson RC, Boynton WV, Fairen AG, Hare TM (2004) Ancient giant basin/aquifer system in the Arabia region, Mars. Lunar Planet Sci Conf, XXXV, #1209 (abstract) [CD-ROM]

  • Edgeworth KE (1943) The evolution of our planetary system. J Br Astron Assoc 53:181–188

    Google Scholar 

  • Edgeworth KE (1949) The origin and evolution of the solar system. Mon Not R Astron Soc 109:600–609

    Google Scholar 

  • Elliot JL, Hammel HB, Wasserman LH, Franz OG, McDonald SW, Person MJ, Olkin CB, Dunham EW, Spencer JR, Stansberry JA, Buie MW, Pasachoff JM, Babcock BA, McConnochie TH (1998) Global warming on Triton. Nature 393:765–767

    Google Scholar 

  • Fairén AG, Ruiz J (2003) Seas under ice: stability of liquid-water oceans under icy worlds. Lunar Planet Sci Conf, XXXIV, #1139 (abstract) [CD-ROM]

    Google Scholar 

  • Fairén AG, Dohm JM, Baker VR, de Pablo M, Ruiz J, Ferris JC, Anderson RC (2003) Episodic flood inundations of the northern plains of Mars. Icarus 165:53-67

    Google Scholar 

  • Fairén AG, Fernández-Remolar DC, Dohm JM, Baker VR, Amils R (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431:423–426

    Google Scholar 

  • Farmer CB, Doms PE (1979) Global and seasonal variation of water vapor on Mars and the implications for permafrost. J Geophys Res 84:2881–2888

    Google Scholar 

  • Fegley B Jr, Treiman AH (1992) Chemistry of atmospheric-surface interactions on Venus and Mars. In: Luhmann JG, Tatrallyay M, Pepin RO (eds), Venus and Mars: atmospheres, ionospheres and solar wind interactions. Geophys Monogr 66:7–72

    Google Scholar 

  • Feldman WC, Maurice S, Lawrence DJ, Little RC, Lawson SL, Gasnault O, Wiens RC, Barraclough BL, Elphic RC, Prettyman TH, Steinberg JT, Binder AB (2001) Evidence for water ice near the lunar poles. J Geophys Res 106:23231–23252

    Google Scholar 

  • Feldman WC, Boynton WV, Tokar RL, Prettyman TH, Gasnault O, Squyres SW, Elphic RC, Lawrence DJ, Lawson SL, Maurice S, McKinney GW, Moore KR, Reedy RC (2002) Global distribution of neutrons from Mars: results from Mars Odyssey. Science 297:75–78

    Google Scholar 

  • Ferris JC, Dohm JM, Baker VR, Maddock T (2002) Dark slope streaks on Mars: are aqueous processes involved? Geophys Res Lett 29:10.1029/2002GL014936

    Article  Google Scholar 

  • Ford EB, Seager S, Turner EL (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885–887

    Google Scholar 

  • Florensky CP, Volkov VP, Nikolaeva OV (1978) A geochemical model of the Venus troposphere. Icarus 33:537–553

    Google Scholar 

  • Fortes AD (2000) Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146:444–452

    Google Scholar 

  • Geissler PE, et al. (1998) Evidence for non-synchronous rotation of Europa. Nature 391:368–370

    Google Scholar 

  • Golombek MP, Bridges NT (2000) Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J Geophys Res 105:1841–1853

    Google Scholar 

  • Greeley R, Guest JE (1987) Geologic map of the eastern equatorial region of Mars. USGS Misc Inv Ser Map I-1802B (1:15,000,000)

  • Greenberg R, Geissler P (2002) Europa’s dynamic icy crust, Meteor. Planet Sci 37:1685–1710

    Google Scholar 

  • Greenberg R, Tufts BR, Geissler P, Hoppa GV (2002) Europa’s crust and ocean: how tides create a potentially habitable setting physical setting. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin Heidelberg New York, pp 111–124

    Google Scholar 

  • Grinspoon DH (1997) Venus revealed: a new Look below the clouds of our mysterious twin planet. Perseus Publishing, Cambridge, MA, USA

    Google Scholar 

  • Gulick VC (1998) Magmatic intrusions and hydrothermal origin for fluvial valleys on Mars. J Geophys Res 103:19365–19387

    Google Scholar 

  • Hartmann WK, Berman DC (2000) Elysium Planitia lava flows: crater count chronology and geological implications. J Geophys Res 105:15, 011–15, 025

    Google Scholar 

  • Head JW, Pappalardo RT (1999) Brine mobilization during lithospheric heating on Europa: Implications for formation of chaos terrain, lenticula texture, and color variations. J Geophys Res 104: 27,143–27,155

    Google Scholar 

  • Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter laser altimeter data. Science 286:2134–2137

    Google Scholar 

  • Head JW, Mustard JF, Kreslavsky MA, Milliken RE, Marchant D (2003) Recent ice ages on Mars. Nature 426:797–802

    Google Scholar 

  • Hoppa GV, Tufts BR, Greenberg R, Geissler PE (1999) Formation of cycloidal features on Europa. Science 285:1899–1902

    Google Scholar 

  • Hubbard W (1984) Planetary interiors. Van Nostrand Reinhold, New York

    Google Scholar 

  • Irion R (2004) The search for pale blue dots. Science 303:30–32

    Google Scholar 

  • Irwin LN, Schulze-Makuch D (2003) Strategy for modeling putative multilevel ecosystems on Europa. Astrobiology 4:813–821

    Google Scholar 

  • Irwin M, Tremaine S, Zytkow A (1995) A search for slow moving objects and the luminosity function of the Kuiper Belt. Astrophys J Lett 110:3082–3092

    Google Scholar 

  • Ivanov MA, Head JW (2001) Geology of Venus: mapping of a global traverse at 30°N latitude. J Geophys Res 106: 17,515–17,566

    Google Scholar 

  • Jakosky B (1998) The search for life on other planets. Cambridge University Press, Cambirdge, UK

    Google Scholar 

  • Jewitt D, Luu J (1993) Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362:730–732

    Google Scholar 

  • Jones AP, Pickering KT (2003) Evidence for aqueous fluid-sediment transport and erosional processes Venus. J Geol Soc 160:319–327

    Google Scholar 

  • Kargel JS, Strom RG (1992) Ancient glaciation on Mars. Geology 20:3–7

    Google Scholar 

  • Kargel JS, Lunine JI (1998) Clathrate hydrates on Earth and in the solar system, in Solar system ices. Based on reviews presented at the international symposium “Solar system ices” held in Toulouse, France, on March 27–30, 1995 Publisher: Dordrecht Kluwer Academic Publishers, Astrophysics and space science library (ASSL) Series Vol no. 227. ISBN0792349024., pp 97–117

  • Kargel JS, Baker VR, Beget JE, Lockwood JF, Pewe TL, Shaw JS, Strom RG (1995) Evidence of ancient continental glaciation in the Martian northern plains. J Geophys Res 100:5351–5368

    Google Scholar 

  • Kargel J, Kaye JZ, Head JW, Marion GM, Sassen R, Crowley JK, Prieto Ballesteros O, Grant SA, Hogenboom DL (2000). Europa’s crust and ocean: origin, composition and prospects for life. Icarus 148:226–265

    Google Scholar 

  • Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494

    Google Scholar 

  • Kerr RA (2004) Life or volcanic belching on Mars. Science 303:1953

    Google Scholar 

  • Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68:176–184

    Google Scholar 

  • Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, Walker RJ, Polanskey C (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780

    Google Scholar 

  • Kivelson MG, Warnecke J, Bennett L, Joy S, Khurana KK, Linker JA, Russell CT, Walker RJ, Polanskey C (1998) Ganymede’s magnetosphere: magnetometer overview. J Geophys Res 103:19,963

    Google Scholar 

  • Komar PD (1980) Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on Earth. Icarus 37:156–181

    Google Scholar 

  • Komatsu G, Baker VR (1997) Paleohydrology and flood geomorphology of Ares Vallis. J Geophys Res 102:4151–4160

    Google Scholar 

  • Komatsu G, Baker VR, Gulick VC, Parker TJ (1993) Venusian channels and valleys; distribution and volcanological implications. Icarus 102:1–25

    Google Scholar 

  • Komatsu G, Kargel JS, Baker VR, Strom RG, Ori GG, Mosangini C, Tanaka KL (2000) A chaotic terrain formation hypothesis: explosive outgas and outflow by dissociation of clathrate on Mars. Lunar Planet Sci Conf [CD-ROM], XXXI, abstract 1434

    Google Scholar 

  • Komatsu G, Gulick VC, Baker VR (2001) Valley networks on Venus. Geomorphology 37:225–240

    Google Scholar 

  • Komatsu G, Dohm JM, Hare TM (2004) Hydrogeologic processes of large-scale tectono-magmatic complexes in Mongolia-southern Siberia and on Mars. Geology 32:325–328

    Google Scholar 

  • Konacki M, Torres G, Jha S, Sasselov DD (2003) An extrasolar planet that transits the disk of its parent star. Nature 421:507–509

    Google Scholar 

  • Krasnopolsky VA (1986) Photochemistry of the atmospheres of Mars and Venus. Springer, Berlin Heidelberg New York, 334 pp

    Google Scholar 

  • Kreslavsky MA, Head JW (2002) Mars: Nature and evolution of young latitude-dependent water-icerich mantle. Geophys Res Lett 29:DOI:10.1029/2002GL015392

  • Kuiper GP (1951) In: Hynek JA (ed) Astrophysics: a topical symposium. McGraw-Hill, New York pp 357–424

  • Léger A, Selsis F, Sotin C, Guillot T, Despois D, Mawet D, Ollivier M, Lebeque A, Valette C, Brachet F, Chazelas B, Lammer H (2004) A new family of planets? “Ocean Planets”. Icarus 169:499–504

    Google Scholar 

  • Levison HF, Morbidelli A, Dones L, Jedicke R, Wiegert PA, Bottke WF Jr (2002) The mass disruption of Oort cloud comets. Science 296:2212–2215

    Google Scholar 

  • Lissauer JJ (1999) Three planets for Upsilon Andromedae. Nature 398:659–660

    Google Scholar 

  • Lorenz RD (2002) Thermodynamics of geysers: application to Titan. Icarus 156:176–183

    Google Scholar 

  • Lorenz RD, Shandera SE (2001) Physical properties of ammonia-rich ice: application to Titan. Geophys Res Lett 28:215–218

    Google Scholar 

  • Lorenz RD, Lunine JI, McKay CP (2000) Geologic settings for aqueous organic synthesis on Titan revisited. Enantiomer 6:83–96

    Google Scholar 

  • Mäkinen JTT, Bertaux J, Combi MR, Quémerais E (2001) Water production of Comet C/1999 S4 (LINEAR) observed with the SQAN instrument. Science 292:1326–1329

    Google Scholar 

  • Malin MC, Edgett KS (2000a) Sedimentary rocks on early Mars. Science 290:1927–1937

    Google Scholar 

  • Malin MC, Edget KS (2000b) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2273–2412

    Google Scholar 

  • Marion GM (2001) Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system. Geochim Cosmochim Acta 65:1883–1896

    Google Scholar 

  • Marion GM (2002) A molal-based model for strong acid chemistry at low temperatures (< 200 to 298 K). Geochim Cosmochim Acta 66:2499-2516

    Google Scholar 

  • Marion GM, Fritsen CH, Eicken H, Payne MC (2003) The search for life on Europa: limiting environmental factors, potential habitats, and earth analogues. Astrobiology 3:785–811

    Google Scholar 

  • Matsui T, Tajika E (1991) Early environmental evolution of Venus. Proceedings of the Lunar and Planetary Science Conference, 22:863–864

    Google Scholar 

  • Max MD, Clifford SM (2001) Initiation of Martian outflow channels: related to the dissociation of gas hydrate? Geophys Res Lett 28:1787–1790

    Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525

    Google Scholar 

  • McKinnon WB (1999) Convective instability in Europa’s floating ice shell. Geophys Res Lett 26:951–954

    Google Scholar 

  • McKinnon WB, Parmentier EM (1986) In: Satellites. University of Arizona Press, Tucson, AZ, pp 718–763

  • McKinnon WB, Zolensky ME (2003) Sulfate content of Europa’s ocean and shell: evolutionary considerations and some geological and astrobiological implications. Astrobiology 4:879–898

    Google Scholar 

  • McKinnon WB, Lunine JI, Banfield D (1995) Origin and evolution of Triton. In: Cruikshank DP (ed) Neptune and Triton. University of Arizona Press, Tucson, pp 807–877

    Google Scholar 

  • Mellon MT, Jakosky BM (1995) The distribution and behavior of Martian ground ice during past and present epochs. J Geophys Res 100:11781–11799

    Google Scholar 

  • Miner E, Wessen R (2002) Neptune: The planet, rings, and satellites. Ed. Praxis, Chichester, England

  • Miyamoto H, Dohm JM, Baker VR, Beyre RA, Bourke M (2004a) Dynamics of unusual debris flows on Martian sand dunes. Geophys Res Lett 31:DOI:10.1029/2004GL020313

  • Miyamoto H, Dohm JM, Beyer RA, Baker VR (2004b) Fluid dynamical implications of anastomosing slope streaks on Mars. J Geophys Res 109:E06008, DOI:10.1029/2003JE002234

  • Moore JM (2004) Blueberry fields for ever. Nature 428:711–712

    Google Scholar 

  • Moore WB, Asphaug E, Sullivan RJ, Klemaszewski JE, Bender KC, Greeley R, Geissler PE, McEwen AS, Turtle EP, Phillips CB, Tufts BR, Head JW, Pappalardo RT, Jones KB, Chapman CR, Belton MJS, Kirk RL, Morrison D (1998a) Large impact features on Europa: Results of the Galileo nominal mission. Icarus 135:127–145

    Google Scholar 

  • Moore JM, Spencer JR, Asphaug E, Morrison D, Klemaszewski James E, Sullivan Robert J, Chuang Frank C, Greeley Ronald, Bender Kelly C, Geissler Paul E, Chapman Clark R, Pilcher Carl B, the Galileo SSI Team (1998b) Mass movement and landform degradation on Callisto and Ganymede as observed during the Galileo nominal mission: the role of sublimation. Lunar Planet Sci Conf, #1553

  • Mouginis-Mark PJ (1985) Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus 64:265–284

    Google Scholar 

  • Mouginis-Mark PJ (1990) Recent water release in the Tharsis region of Mars. Icarus 84:362–373

    Google Scholar 

  • Mumma MJ, Dello Russo, DiSanti MA, Magee-Sauer K, Novak RE, Brittain S, Rettig T, McLean IS, Reuter DC, Xu LH (2001) Organic composition of C/1999 S4 (LINEAR): A comet formed near Jupiter? Science 292:1334–1339

    Google Scholar 

  • Murray N, Hansen B, Holman M, Tremaine S (1998) Migrating planets. Science 279:69-72

    Google Scholar 

  • Oort JH (1950) The structure of a cloud of comets surrounding the solar system and a hypothesis concerning its structure. Bull Astron Inst Neth 11:91–110

    Google Scholar 

  • Oró J (1961) Comets and the formation of biochemical compounds on the primitive Earth. Nature 190:389–390

    Google Scholar 

  • Paige DA (1992) The thermal stability of near-surface ground ice on Mars, Nature 356:43–45

    Google Scholar 

  • Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klassen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK (1999) Does Europa have a surface ocean? Evaluation of the geological evidence. J Geophys Res 104:24015–24055

    Google Scholar 

  • Parker TJ, Gorsline DS, Saunders RS, Pieri DC, Schneeberger DM (1993) Coastal geomorphology of the Martian northern plains. J Geophys Res 98:11,061–11,078

    Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2004) Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17

    Google Scholar 

  • Riley J, Hoppa GV, Greenberg R, Tufts BR, Geissler P (2000) Distribution of chaotic terrain of Europa . J Geophys Res 105:22,599–22,615

    Google Scholar 

  • Rodriguez JAP, Sasaki S, Miyamoto H, Dohm JM (2004a) Control of impact crater-related fracture systems on the subsurface hydrology and ground collapse. Lunar Planet Sci Conf, XXXV, #1676 (abstract) [CD-ROM]

  • Rodriguez JAP, Sasaki S, Miyamoto H, Dohm JM (2004b) Significance of confined cavernous systems for outflow channel water sources, reactivation mechanisms, and chaos formation. Lunar Planet Sci Conf, XXXV, #1676 (abstract) [CD-ROM]

  • Roe HG, de Pater I, Macintosh BA, McKay CP (2002) Titan’s clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581(2):1399–1406

    Google Scholar 

  • Ross RG, Kargel JS (1998) Thermal conductivity of ices with special reference to Martian polar caps. In: Schmitt B, De Bergh C, Festou M (eds) Solar system ices. Kluwer Academic Publishers, Dordrecht, pp 33–62

    Google Scholar 

  • Ruiz J (2001) Stability against freezing of an internal liquid-water ocean in Callisto. Nature 412:409–411

    Google Scholar 

  • Ruiz J, Fairén AG (2002) Seas under ice: stability of oceans within icy worlds. 2nd European Workshop on Exo/Astrobiology, Graz, Austria (abstract)

    Google Scholar 

  • Sagan C, Thompson WR, Khare BN (1992) Titan: a laboratory for prebiological organic chemistry. Acc Chem Res 25:286–292

    Google Scholar 

  • Sagan C, Khare BN, Thompson WR, McDonald GD, Wing MR, Bada JL, Vo-Dinh T, Arakawa ET (1993) Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter. Astrophys J 414:399–405

    Google Scholar 

  • Schenk PM, McKinnon WB, Gwynn D, Moore JM (2001) Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature 410:57–50

    Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002a) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2:197–202

    Google Scholar 

  • Schulze-Makuch D Irwin LN (2002b) Energy cycling and hypothetical organisms in Europa’s ocean. Astrobiology 2:105–121

    Article  Google Scholar 

  • Schulze-Makuch D Irwin LN. (2004) Life in the universe: expectations and Constraints. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schulze-Makuch D, Abbas O (2004) Titan: a prime example for alternative possibilities of life? In press as book chapter for Exobiology of Titan. Simakov Michael (ed)

  • Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock MA (2004) A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4:11–18

    Google Scholar 

  • Scott DH, Tanaka KL (1986) Geologic map of the western equatorial region of Mars. USGS Misc Inv Ser Map I-1802-A (1:15,000,000)

  • Scott DH, Dohm JM, Rice JW Jr (1995) Map of Mars showing channels and possible paleolake basins. USGS Misc Inv Ser Map I-2461 (1:30,000,000)

  • Showman AP, Malhotra R (1999) The Galilean satellites. Science 286:77–84

    Google Scholar 

  • Seibert NM, Kargel JS (2001) Small-scale Martian polygonal terrain: Implications for liquid surface water. Geophys Res Lett 28:899–903

    Google Scholar 

  • Slade MA, Butler BJ, Bryan J, Muhleman DO (1992) Mercury radar imaging– evidence for polar ice. Science 258:635–640

    Google Scholar 

  • Smith MD (2002) The annual cycle of water vapor on Mars as observed by the thermal emission spectrometer. J Geophys Res 107:DOI 10.1029/2002JE001841

    Google Scholar 

  • Smith BA, Soderblom LA, Johnson TV, Ingersoll AP, Collins SA, Shoemaker EM, Hunt GE, Masursky H, Carr MH, Davies ME, Cook AF, Boyce JM, Danielson GE, Owen TC, Sagan C, Beebe RF, Veverka J, Strom RG, McCauley JF, Morrison D, Briggs GA, Suomi VE (1979) The Jupiter system through the eyes of Voyager 1. Science 204:951–972

    Google Scholar 

  • Smith BA, 64 colleagues (1989) Voyager 2 at Neptune: imaging science results. Science 246:1.422–1.449

    Google Scholar 

  • Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Shoemaker EM (1990) Triton’s geysers-like plumes: discovery and basic characterization. Science 250:410–415

    Google Scholar 

  • Spencer JR, Tamppari LK, Martin TZ, Travis LD (1999) Temperatures on Europa from Galileo photopolarimeter-radiometer: nighttime thermal anomalies. Science 284:1514–1516

    Google Scholar 

  • Squyres SW, Athena Science Team (2004) Initial results from the MER Athena science investigation at Gusev Crater and Meridiani Planum. Lunar Planet Sci Conf, XXXV, #2187 (abstract) [CD-ROM]

  • Stern SA (2003) The evolution of comets in the Oort cloud and Kuiper belt. Nature 424:639–642

    Google Scholar 

  • Stevenson D (1998) An ocean within Callisto? Eos Trans. AGU Fall Meeting, abstract PB12-10

  • Tanaka KL (1986) The stratigraphy of Mars. Proceedings of the 17th Lunar Planet Sci Conf, in J. Geophys Res, Part 1, 91:E139–E158

  • Thomson WR, Sagan C (1990) Color and chemistry on Triton. Science 250:415-418

    Google Scholar 

  • Throop HB, Bally J, Esposito LW, McCaughrean MJ (2001) Evidence for dust grain growth in young circumstellar disks. Science 292:1686–1689

    Google Scholar 

  • Tokano T, Neubauer FM, Laube M, McKay CP (2001) Three-dimensional modeling of the tropospheric methane cycle on Titan. Icarus 153:130–147

    Google Scholar 

  • Vinogradov ME, Vereshchaka AL, Shushkina EA (1996) Vertical structure of the zooplankton communities in the oligotrophic areas of the northern Atlantic, and influence of the hydrothermal vent. Okeanologiya 36:71–79

    Google Scholar 

  • Volkov VP, Zolotov MY, Khodakovsky IL (1986) Lithospheric-atmospheric interactions on Venus. In: Saxena SK (ed) Chemistry and physics of the terrestrial planets. Springer, Berlin Heidelberg New York, pp 136 –190

    Google Scholar 

  • Watts AW, Greeley R, Melosh HJ (1991) The formation of terrains antipodal to major impacts. Icarus 93:159–168

    Google Scholar 

  • Weissman PR (1996) In: Rettig TW, Hahn JM (eds) Completing the inventory of the solar system. ASP Conf Proc 107:265–288

    Google Scholar 

  • Williams JP, Paige DA, Manning CE (2003) Layering in the wall rocks of Valles Marineris: intrusive and extrusive magmatism. Geophys Res Lett 30:10.1029/2003GL017662

    Google Scholar 

  • Williams DA, Klemaszewski JE, Chuang FC, Greeley R (2001) Galileo imaging observations of the Valhalla antipode: Support for a subsurface ocean on Callisto? DPS Meeting, Abstract #35.06

    Google Scholar 

  • Zolotov MY, Shock EL (2003) Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J Geophys Res Planets 108: 10.1029/2002JE001966

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, V.R., Dohm, J.M., Fairén, A.G. et al. Extraterrestrial hydrogeology. Hydrogeol J 13, 51–68 (2005). https://doi.org/10.1007/s10040-004-0433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0433-2

Keywords

Navigation