Hydrogeology Journal

, Volume 13, Issue 1, pp 263–287 | Cite as

Geochemistry and the understanding of ground-water systems

Paper

Abstract

Geochemistry has contributed significantly to the understanding of ground-water systems over the last 50 years. Historic advances include development of the hydrochemical facies concept, application of equilibrium theory, investigation of redox processes, and radiocarbon dating. Other hydrochemical concepts, tools, and techniques have helped elucidate mechanisms of flow and transport in ground-water systems, and have helped unlock an archive of paleoenvironmental information. Hydrochemical and isotopic information can be used to interpret the origin and mode of ground-water recharge, refine estimates of time scales of recharge and ground-water flow, decipher reactive processes, provide paleohydrological information, and calibrate ground-water flow models. Progress needs to be made in obtaining representative samples. Improvements are needed in the interpretation of the information obtained, and in the construction and interpretation of numerical models utilizing hydrochemical data. The best approach will ensure an optimized iterative process between field data collection and analysis, interpretation, and the application of forward, inverse, and statistical modeling tools. Advances are anticipated from microbiological investigations, the characterization of natural organics, isotopic fingerprinting, applications of dissolved gas measurements, and the fields of reaction kinetics and coupled processes. A thermodynamic perspective is offered that could facilitate the comparison and understanding of the multiple physical, chemical, and biological processes affecting ground-water systems.

Keywords

Isotopes Geochemistry Hydrochemical modeling Paleohydrology Groundwater age 

Résumé

La géochimie a contribué de façon importante à la compréhension des systèmes d’eaux souterraines pendant les 50 dernières années. Les avancées ont portées sur le développement du concept des faciès hydrochimiques, sur l’application de la théorie des équilibres, l’étude des processus d’oxydoréduction, et sur la datation au radiocarbone. D’autres concepts, outils et techniques, ont aidé à l’ élucidation des élucider les mécanismes d’écoulement et de transport dans les systèmes d’eaux souterraines, et à la compréhension des archives informations paléo-environnementales. Les informations hydrochimiques et isotopiques peuvent être utilisées pour interpréter l’origine et le mode de recharge des eaux souterraines, affiner l’estimation des temps de recharge et d’ écoulements, déchiffrer les processus de réaction, apporter une meilleure information paléohydrogéologique et calibrer les modèles d’écoulement des eaux souterraines. Beaucoup de progrès ont besoin d’être réalisés pour obtenir des échantillons représentatifs. Des améliorations sont nécessaires dans l’interprétation des informations obtenues, et dans la construction et l’interprétation de modèles numériques utilisant des données hydrochimiques. La meilleure approches arsurément un processus itératif optimisé entre la collection de données de terrain et l’analyse, l’interprétation, et l’application d’outils de modélisation statistique, inverse et direct. Des avancées sont anticipées par les dans le demeine des études microbiologiques, dans la caractérisation des matières organiques naturelles, le marquage isotopique, les mesures de gaz dissous, les réactions cinétiques la compréhension des couplages. Une perspectives thermodynamique pourraient faciliter la comparaison et la compréhension des multiples processus physiques, chimiques et biologiques qui affectent les systèmes hydrogéologiques.

Resumen

La geoquímica ha contribuido significativamente al entendimiento de los sistemas de aguas subterráneas durante los últimos 50 años. Entre los avances históricos puede incluirse el desarrollo del concento de facies hidroquímicas, la aplicación de la teoría de equilibrio, investigación de los procesos oxidación-reducción, y datación con radiocarbono. Otros conceptos, herramientas y técnicas hidroquímicas han ayudado a esclarecer los mecanismos de flujo y transporte en sistemas de agua subterránea, y han ayudado a descifrar un archivo de información paleoambiental. Información hidroquímica e isotópica puede utilizarse para interpretar el origen y modo de recarga de agua subterránea, descifrar procesos reactivos, aportar información paleohidrológica, y calibrar modelos de flujo de agua subterránea. Necesita avanzarse en la obtención de muestras representativas. Se necesitan mejoras en la interpretación de la información obtenida y en la construcción e interpretación de modelos numéricos que utilizan datos hidroquímicos. El mejor enfoque asegurará un proceso iterativo optimizado entre toma y análisis de datos de campo, interpretación, y la aplicación de herramientas de modelizado estadísticas, directas, e inversas. Se anticipan avances a partir de investigaciones microbiológicas, la caracterización de orgánicos naturales, caracterización isotópica, aplicaciones de mediciones de gas disuelto, y los campos de cinética de reacción y procesos acoplados. Se ofrece una perspectiva termodinámica que podría facilitar la comparación y entendimiento de los múltiples procesos físicos, químicos, y biológicos que afectan sistemas de aguas subterráneas.

References

  1. Aeschbach-Hertig W, Schlosser P, Stute M, Simpson HJ, Ludin A, Clark JF (1998) A 3H/ 3He study of ground water flow in a fractured bedrock aquifer. Ground Water 36:661–670Google Scholar
  2. Aeschbach-Hertig W, Peeters F, Beyerle U, Kipfer R (2000) Paleotemperature reconstruction from noble gases in ground water taking into account equilibrium with entrapped air. Nature 405:1040–1044Google Scholar
  3. Aeschbach-Hertig W, Stute M, Clack JF, Reuter RF, Schlosser P (2002) A paleotemperature record derived from dissolved noble gases in groundwater of the Aquia Aquifer (Maryland, USA). Geochim Cosmochim Acta 66:797–817CrossRefGoogle Scholar
  4. Anderholm SK (1988) Ground-water geochemistry of the Albuquerque-Belen Basin, Central New Mexico. US Geol Surv Water Resour Invest Rep 86-4094, 110 ppGoogle Scholar
  5. Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J Hydrol 41:233–252CrossRefGoogle Scholar
  6. Andrews JN, Giles IS, Kay LF, Lee DJ, Osmond JK, Cowart JB, Fritz P, Barker JF, Gale J (1982) Radioelements, radiogenic helium and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim Cosmochim Acta 46:1533–1543CrossRefGoogle Scholar
  7. Andrews JN, Balderer W, Bath AH, Clausen HB, Evans GV, Florkowski T, Goldbrunner JE, Ivanovich M, Loosli H, Zojer H (1984) Environmental isotope studies in two aquifer systems: a comparison of groundwater dating methods. In: Proceedings of Isotope Hydrology Conference 1983. International Atomic Energy Agency, Vienna, IAEA-SM-270/93, pp 535–576Google Scholar
  8. Andrews JN, Goldbrunner JE, Darling WG, Hooker PJ, Wilson GB, Youngman MJ, Eichinger L, Rauert W, Stichler W (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasse basin of Upper Austria. Earth Planet Sci Lett 73:317–332CrossRefGoogle Scholar
  9. Andrews JN, Hussain N, Batchelor AS, Kwakwa KK (1986) 222Rn solution by the circulating fluids in a hot dry rock geothermal reservoir. Appl Geochem 1:647–657CrossRefGoogle Scholar
  10. Andrews JN, Fontes JCh, Fritz P, Nordstrom K (1988) Hydrogeochemical assessment of crystalline rock for radioactive waste disposal: the Stripa experience. Swedish Nuclear Fuel and Waste Management Co, SKB Tech Rep 88-05, 26 ppGoogle Scholar
  11. Andrews JN, Ford DJ, Hussain N, Trivedi D, Yougman MJ (1989) Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim Cosmochim Acta 53:1791–1802CrossRefGoogle Scholar
  12. Andrews JN (1991) Noble gases and radioelements in groundwaters. In: Downing RA, Wilkinson WB (eds) Applied groundwater hydrology. Clarendon Press, Oxford, pp 243–265Google Scholar
  13. Andrews JN (1992) Mechanism for noble gas dissolution by groundwaters. In: Proceedings of Consultants Meeting on Isotopes of Noble Gases as Tracers in Environmental Studies. International Atomic Energy Agency, Vienna, pp 87–110Google Scholar
  14. Andrews JN, Fontes JCh (1993) Comment on “Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia” by Torgersen et al. Water Resour Res 29:1871–1874CrossRefGoogle Scholar
  15. Andrews JN, Edmunds WM, Smedley PL, Fontes J-Ch, Fifield LK, Allan GL (1994) Chlorine-36 in groundwater as a paleoclimatic indicator: the East Midlands Triassic sandstone aquifer (UK). Earth Planet Sci Lett 122:159–171CrossRefGoogle Scholar
  16. Andrews RW, Pearson FJ Jr (1984) Transport of 14C and uranium in the Carrizo aquifer of south Texas: a natural analog of radionuclide migration. Materials Research Society Symposium Proceedings, vol 26. Elsevier, pp 1085–1092Google Scholar
  17. Appelo CAJ, Willemsen A (1987) Geochemical calculations and observations on salt water intrusions, 1: A combined geochemical/mixing cell model. J Hydrol 94:313–330CrossRefGoogle Scholar
  18. Appelo CAJ, Willemsen A, Beekman HE, Griffionen J (1990) Geochemical calculations and observations on salt water intrusions, 2: Validation of a geochemical model with column experiments. J Hydrol 120:225–250CrossRefGoogle Scholar
  19. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema Press, Rotterdam, The Netherlands, 536 ppGoogle Scholar
  20. Appelo CAJ (1994) Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resour Res 30:2793–2805CrossRefGoogle Scholar
  21. Aravena R, Wassenaar LI, Plummer LN (1995) Estimating C-14 groundwater ages in a methanogenic aquifer. Water Resour Res 31:2307–2317CrossRefGoogle Scholar
  22. Baas-Becking LGM, Kaplan IR, Moore D (1960) Limits of the natural environment in terms of pH and oxidation–reduction potentials. J Geol 68:243–284Google Scholar
  23. Back W (1960) Origin of hydrochemical facies of ground water in the Atlantic Coastal Plain. In: Proceedings of 21st International Geological Congress, Copenhagen 1960, Pt 1, pp 87–95Google Scholar
  24. Back W (1966) Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. US Geol Surv Prof Pap 498-AGoogle Scholar
  25. Back W, Hanshaw BB (1970) Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. J Hydrol 10:330–368CrossRefGoogle Scholar
  26. Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429CrossRefGoogle Scholar
  27. Back W, Herman JS (1997) American hydrogeology at the millennium: an annotated chronology of 100 most influential papers. Hydrogeol J 5:37–50CrossRefGoogle Scholar
  28. Baedecker MJ, Back W (1979) Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J Hydrol 43:393–414CrossRefGoogle Scholar
  29. Balderer W, Synal HA (1996) Application of the chlorine-36 method for the characterization of the groundwater circulation in tectonically active areas: examples from northwestern Anatolia/Turkey. Terra Nova 8:324–333Google Scholar
  30. Bath AH, Edmunds WM, Andrews JN (1979) Paleoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. In: Proceedings of Isotope Hydrology Conference 1978. International Atomic Energy Agency, Vienna, pp 545–568Google Scholar
  31. Bath AH, Pearson FJ, Gautschi A, Waber HN (2001) Water–rock interactions in mudrocks and similar low permeability material. In: Cidu R (ed) Proceedings of 10th International Symposium on Water–Rock Interaction in Villasimius, Italy. Balkema Press, The Netherlands, pp 3–12Google Scholar
  32. Bayari S (2002) TRACER: an EXCEL workbook to calculate mean residence time in groundwater by use of tracers CFC-11, CFC-12 and tritium. Comput Geosci 28:621–630CrossRefGoogle Scholar
  33. Bayer R, Schlosser P, Bonisch G, Rupp H, Zaucker F, Zimmek G (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He in-growth method. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Jahrgang 1989, 5. Abhandlung, Springer, Berlin Heidelberg New York, 42 ppGoogle Scholar
  34. Bentley HW, Phillips FM, Davis SN, Habermehl MA, Airey PL, Calf GE, Elmore D, Gove HE, Torgersen T (1986) Chlorine-36 dating of very old groundwater, 1. The Great Artesian Basin, Australia. Water Resour Res 22:1991–2001Google Scholar
  35. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365Google Scholar
  36. Bethke CM (1996) Geochemical reaction modeling. Oxford University Press, New York, 397 ppGoogle Scholar
  37. Bethke CM, Johnson TM (2002) Ground water age. Ground Water 40:337–339Google Scholar
  38. Bexfield LM, Anderholm SK (2002) Spatial patterns and temporal variability in water quality from City of Albuquerque drinking-water supply wells and piezometer nests, with implications for the ground-water flow system. US Geol Surv Water Resour Invest Rep 01-4244, 101 ppGoogle Scholar
  39. Bodine MW Jr, Jones BF (1986) The salt norm: a quantitative chemical–mineralogical characterization of natural waters. US Geol Surv Water Resour Invest Rep 86-4086, 130 ppGoogle Scholar
  40. Bodine MW Jr, Jones BF (1990) Normative analysis of groundwaters from the Rustler Formation associated with the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico. In: Spencer RJ, Chou I-M (eds) Fluid–mineral interactions: a tribute to H.P. Eugster. Geochem Soc Spec Publ No. 2, pp 213–269Google Scholar
  41. Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9):2319–2339CrossRefGoogle Scholar
  42. Bowser CJ, Jones BF (2002) Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302:582–662Google Scholar
  43. Brantley SL, Chen Y (1995) Chemical weathering rates of pyroxenes and amphiboles. In: White AF, Brantley SL (eds) Mineral Soc Am Rev Mineral 31:119–172Google Scholar
  44. Brinkmann R, Münnich KO, Vogel JC (1959) 14C-altersbestimmung von grundwasser [C14 age determination of groundwater]. Naturwissenschaften 46:10–12CrossRefGoogle Scholar
  45. Brinkmann R, Münnich KO, Vogel JC (1960) Anwendung der C 14-methode auf bodenbildung und grundwasserkreislauf [Application of the C 14 method to soil structure and the ground water cycle]. Geol Rundschau 49:244–253Google Scholar
  46. Brown JG, Bassett RL, Glynn PD (1998) Analysis and simulation of reactive transport of metal contaminants in ground water in Pinal Creek Basin, Arizona. J Hydrol 209:225–250CrossRefGoogle Scholar
  47. Brown JG, Glynn PD (2003) Kinetic dissolution of carbonates and Mn oxides in acidic water: measurement of in situ field rates and reactive transport modeling. Appl Geochem 18:1225–1239CrossRefGoogle Scholar
  48. Buddemeier RW, Okamoto HS, Hurd DO, Hufen RR (1972) Effects of solution and exchange on the radiocarbon dating of sediments and natural waters. In: Proceedings of 8th International Conference on Radiocarbon Dating, R Soc N Z, Wellington, Vol 1, pp 297–310Google Scholar
  49. Buffle J, van Leeuwen HP (eds) (1993) Environmental particles, vol 2, Lewis Publishers, Boca Raton, 426 ppGoogle Scholar
  50. Burgman JO, Calles B, Westman F (1987) Conclusions from a ten-year study of oxygen-18 in precipitation and runoff in Sweden. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna, pp 579–590Google Scholar
  51. Burns DA, Plummer LN, McDonnell JJ, Busenberg E, Casile G, Kendall C, Hooper RP, Freer JE, Peters NE, Beven K, Schlosser P (2003) Geochemical evolution of riparian ground water in a forested Piedmont catchment. Ground Water 41:913–925Google Scholar
  52. Burr CS, Thomas JM, Reines D, Jeffrey D, Courtney D, Jull AJT, Lange T (2001) Sample preparation of dissolved organic carbon in groundwater for AMS 14C analysis. Radiocarbon 43:183–190Google Scholar
  53. Burton WC, Plummer LN, Busenberg E, Lindsey BD, Gburek WR (2002) Influence of fracture anisotropy on ground-water ages and chemistry, Valley and Ridge Province, Pennsylvania. Ground Water 40:242–257Google Scholar
  54. Busby JF, Lee RW, Hanshaw BB (1983) Major geochemical processes related to the hydrology of the Madison aquifer system and associated rocks in parts of Montana, South Dakota, and Wyoming. US Geol Surv Water Resour Invest Rep 83-4093, 180 ppGoogle Scholar
  55. Busby JF, Plummer LN, Lee RW, Hanshaw BB (1991) Geochemical evolution of water in the Madison aquifer in parts of Montana, South Dakota, and Wyoming. US Geol Surv Prof Pap 1273-F, 89 ppGoogle Scholar
  56. Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189–1208CrossRefGoogle Scholar
  57. Busenberg E, Plummer LN (2000) Dating young ground water with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36:3011–3030CrossRefGoogle Scholar
  58. Castro MC, Jambon A, De Marsily G, Schlosser P (1998a) Noble gases as natural tracers of water circulation in the Paris Basin, 1. Measurements and discussion of their origin and mechanisms of vertical transport in the basin. Water Resour Res 34:2443–2466CrossRefGoogle Scholar
  59. Castro MC, Goblet P, Ledoux E, Violette S, De Marsily G (1998b) Noble gases as natural tracers of water circulation in the Paris Basin. 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour Res 34:2467–2483CrossRefGoogle Scholar
  60. Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137–1167CrossRefGoogle Scholar
  61. Cederstrom DJ (1946) Genesis of ground waters in the Coastal Plain of Virginia. Econ Geol 41:218–245Google Scholar
  62. Champ DR, Gulens J, Jackson RE (1979) Oxidation–reduction sequences in ground water systems. Can J Earth Sci 16:12–23Google Scholar
  63. Chapelle F (1993) Ground-water microbiology and geochemistry. Wiley, New York, 424 ppGoogle Scholar
  64. Chapman NA, McKinley IG, Shea ME, Smellie JAT (1993) The Poços de Caldas project: natural analogues of processes in a radioactive waste repository. Elsevier, AmsterdamGoogle Scholar
  65. Charlton SR, Macklin CL, Parkhurst DL (1997) PHREEQCI—a graphical user interface for the geochemical computer program PHREEQC. US Geol Surv Water Resour Invest Rep 97–4222, 9 ppGoogle Scholar
  66. Charlton SR, Parkhurst DL (2002) PHREEQCl–a graphical user interface to the geochemical model PHREEQC. US Geol Surv Fact Sheet FS-031-02Google Scholar
  67. Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Parts 1–3. Geochim Cosmochim Acta 8:22–48, 137–170, 198–212CrossRefGoogle Scholar
  68. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publisher, Boca Raton, 328 ppGoogle Scholar
  69. Collon P, Kutschera W, Loosli HH, Lehmann BE, Purtschert R, Love A, Sampson L, Anthony D, Cole D, Davids B, Morrissey DJ, Sherrill BM, Steiner M, Pardo RC, Paul M (2000) 81Kr in the Great Artesian basin, Australia: a new method for dating very old groundwater. Earth Planet Sci Lett 182:103–113CrossRefGoogle Scholar
  70. Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J Hydrol 191:245–265CrossRefGoogle Scholar
  71. Cook PG, Böhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 1–30Google Scholar
  72. Cook PG, Herczeg AL (2000) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, 529 ppGoogle Scholar
  73. Coplen TB, Winograd IJ, Landwehr JM, Riggs AC (1994) 500,000-year stable carbon isotopic record from Devils Hole, Nevada. Science 263:361–365Google Scholar
  74. Davidson MR, Airey PL (1982) The effect of dispersion on the establishment of a paleoclimatic record from groundwater. J Hydrol 58:131–147CrossRefGoogle Scholar
  75. Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF, White AF (eds) Mineral-water interface geochemistry. Mineral Soc Am Rev Mineral 23:177–248Google Scholar
  76. Davis SN, Bentley HW (1982) Dating groundwater, a short review. In: Cutrie LA (ed) Nuclear and chemical dating techniques; interpreting the environmental record. Am Chem Soc Symp Ser 176, Washington, DC, pp 187–222Google Scholar
  77. Davis SB, Fabryka-Martin J, Wolfsberg L, Moysey S, Shaver R, Alexander EC Jr, Krothe N (2000) Chlorine-36 in ground water containing low chloride concentrations. Ground Water 38:912–921Google Scholar
  78. Davis SN, Moysey S, Cecil LD, Zreda M (2003) Chlorine-36 in groundwater of the United States: empirical data. Hydrogeol J 11:217–227Google Scholar
  79. Deák J, Stute M, Rudolph J, Sonntag C (1987) Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C and noble gas measurements. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna. IAEA-SM-299/39, pp 335–350Google Scholar
  80. Drever JI (1997) The geochemistry of natural waters-surface and groundwater environments, 3rd edn. Prentice Hall, Upper Saddle River, NJ, 436 ppGoogle Scholar
  81. Dreybrodt W, Buhmann D, Michaelis J, Usdowski E (1992) Geochemically controlled calcite precipitation by CO2 outgassing: field measurements of precipitation rates in comparison to theoretical predictions. Chem Geol 97:285–294CrossRefGoogle Scholar
  82. Dutton AR (1995) Ground water isotopic evidence for paleorecharge in US High Plains aquifers. Quat Res 43:221–231CrossRefGoogle Scholar
  83. Eberl DD, Srodon J, Kralik M, Taylor BE, Peterman ZE (1990) Ostwald ripening of clays and metamorphic minerals. Science 248:474–477Google Scholar
  84. Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46(11):2069–2081CrossRefGoogle Scholar
  85. Edmunds WM, Smedley PL (2000) Residence time indicators in groundwater: the East Midlands Triassic sandstone aquifer. Appl Geochem 15:737–752CrossRefGoogle Scholar
  86. Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour Res 28:2829–2843CrossRefGoogle Scholar
  87. Engesgaard P, Molson J (1998) Direct simulation of ground water age in the Rabis Creek aquifer, Denmark. Ground Water 36:77–582Google Scholar
  88. Eriksson E (1958) The possible use of tritium for estimating groundwater storage. Tellus 10:472–478Google Scholar
  89. Evans GV (1983) Tracer techniques in hydrology. Int J Appl Radiat Isot 34:451–475CrossRefGoogle Scholar
  90. Evans WC, van Soest MC, Mariner RH, Hurwitz S, Ingebritsen SE, Wicks CW Jr, Schmidt ME (2004) Magmatic intrusion west of Three Sisters, central Oregon, USA: the perspective from spring chemistry. Geology 32:69–72CrossRefGoogle Scholar
  91. Fabryka-Martin J, Davis SN, Elmore D (1987) Applications of 129I and 36Cl in hydrology. Nuclear Instrum Methods Phys Res B29:361–371Google Scholar
  92. Florkowski T, Rozanski K (1986) Radioactive noble gases in the terrestrial environment. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry: the terrestrial environment B, vol 2. Elsevier, New York, pp 481–506Google Scholar
  93. Fontes J-Ch (1983) Dating of groundwater. In: Guidebook on nuclear techniques in hydrology, 1983 edn., International Atomic Energy Agency, Vienna, Tech Rep Ser 91:285–317Google Scholar
  94. Fontes J-Ch (1994) Isotope paleohydrology and the prediction of long-term repository behaviour. Terra Nova 6:20–34Google Scholar
  95. Fontes J-Ch (1992) Chemical and isotopic constraints on 14C dating of groundwater. In: Taylor RE, Long A, Kra R (eds) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 242–261Google Scholar
  96. Fontes J-Ch, Garnier J-M (1979) Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 15:399–413Google Scholar
  97. Foster MD (1950) The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains. Geochim Cosmochim Acta 1:33–48CrossRefGoogle Scholar
  98. Fröhlich K (1990) On dating of old groundwater. Isotopenpraxis 26:557–560Google Scholar
  99. Fryar AE, Mullican WF, Macko SA (2001) Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrogeol J 9:522–542CrossRefGoogle Scholar
  100. Fu Wei Huai, Ledoux E, de Marsily G (1990) Regional modeling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin. J Hydrol 120:341–358CrossRefGoogle Scholar
  101. Gamsjäger H, Königsberger E, Preis W (2000) Lippmann diagrams: theory and application to carbonate systems. Aquat Geochem 6:119–132CrossRefGoogle Scholar
  102. Garmonov IV (1958) Fundemental principles of hydrochemical zoning of underground waters in the European part of the Soviet Union. In: Proceedings of Symposium on Ground Water 1955, Central Board of Geophysics. Temple Press, Calcutta. Publ No. 4, pp 293–302Google Scholar
  103. Garnier J-M (1985) Retardation of dissolved radiocarbon through a carbonated matrix. Geochim Cosmochim Acta 49:683–693CrossRefGoogle Scholar
  104. Garrels RM, Thompson ME (1962) A chemical model for sea water at 25°C and one atmosphere total pressure. Am J Sci 260:57–66Google Scholar
  105. Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper and Row, New York, 450 ppGoogle Scholar
  106. Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67:222–242Google Scholar
  107. Gibbs JW (1876, 1878) On the equilibrium of heterogeneous substances. Connecticut Academy Transactions III:108–248, 343–524. In: The scientific papers of J. Willard Gibbs. Dover Publ, New York, 1961Google Scholar
  108. Glynn PD, Reardon EJ (1990) Solid-solution aqueous-solution equilibria: thermodynamic theory and representation. Am J Sci 290:164–201Google Scholar
  109. Glynn PD, Reardon EJ, Plummer LN, Busenberg E (1990) Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems. Geochim Cosmochim Acta 54:267–282CrossRefGoogle Scholar
  110. Glynn PD (1991) MBSSAS: a code for the computation of Margules parameters and equilibrium relations in binary solid-solution aqueous-solution systems. Comput Geosci 17:907–966CrossRefGoogle Scholar
  111. Glynn PD, Reardon EJ (1992) Reply to Comment by Königsberger and Gamsjäger on “Solid-solution aqueous-solution equilibria: thermodynamic theory and representation”. Am J Sci 292:215–225Google Scholar
  112. Glynn PD, Plummer LN, Busenberg E, Reardon EJ (1992) Reply to a Comment by Dr. Stoessell on “Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems”. Geochim Cosmochim Acta 56:2559–2572CrossRefGoogle Scholar
  113. Glynn PD, Brown JG (1996) Reactive transport modeling of acidic metal-contaminated ground water at a site with sparse spatial information. In: Steefel CI, Lichtner P, Oelkers E (eds) Reactive transport in porous media: general principles and application to geochemical processes. Mineral Soc Am Rev Mineral 34:377–438Google Scholar
  114. Glynn PD, Voss CI, Provost AM (1999) Deep penetration of oxygenated meltwaters from warm based sheets into the Fennoscandian Shield. In: Use of hydrological information in testing groundwater flow models: Technical Summary and Proceedings of a Workshop, Nuclear Energy Agency, ISBN 92-64-16153-8, pp 201–241Google Scholar
  115. Glynn PD, Voss CI (1999) Geochemical characterization of Simpevarp ground waters near the Äspö Hard Rock Laboratory. Swedish Nuclear Power Inspectorate (SKI), SKI Rep 96:29, 210 ppGoogle Scholar
  116. Glynn PD (2000) Solid-solution solubilities and thermodynamics: sulfates, carbonates and halides. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate minerals—crystallography, geochemistry and environmental significance. Rev Mineral Geochem 40:481–511Google Scholar
  117. Glynn PD (2003) Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: implications for reactive transport modeling and performance assessments of nuclear waste disposal sites. Comput Geosci 29:331–349CrossRefGoogle Scholar
  118. Gonfiantini R, Zuppi GM (2003) Carbon isotope exchange rate of DIC in karst groundwater. Chem Geol 197:319–336CrossRefGoogle Scholar
  119. Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296CrossRefGoogle Scholar
  120. Gosselin DC, Harvey FE, Frost CD (2001) Geochemical evolution of ground water in the Great Plains (Dakota) aquifer of Nebraska: Implications for the management of a regional aquifer system. Ground Water 39:98–108Google Scholar
  121. Grabczak J, Zuber A, Maloszewski P, Rozanski K, Weiss W, Sliwka I (1982) New mathematical models for the interpretation of environmental tracers in groundwaters and the combined use of tritium, C-14, Kr-85, He-3, and Freon-11 for groundwater studies. Beitr Geol Schweiz, Hydrol 28:395–406Google Scholar
  122. Hanshaw BB, Back W, Rubin M (1965a) Radiocarbon determinations for estimating groundwater flow velocities in Central Florida. Science 148:494–495Google Scholar
  123. Hanshaw BB, Back W, Rubin M (1965b) Carbonate equilibria and radiocarbon distribution related to groundwater flow in the Floridan Limestone aquifer, USA. In: Proceedings of International Association on Science of Hydrology, Dubrovnik, 1965, pp 601–614Google Scholar
  124. Hanshaw BB, Back W (1974) Determination of regional hydraulic conductivity through use of 14C dating of groundwater. Mémoires de l’Association Internationale des Hydrogéologues, Congres de Montpellier, X-1, pp 195–196Google Scholar
  125. Harvey RW, Harms H (2002) Use of microorganisms as tracers in groundwater. In: Britton G (ed) Encylopedia of environmental microbiology. Wiley, New York, pp 3194–3202Google Scholar
  126. Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723–752CrossRefGoogle Scholar
  127. Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations. Geochim Cosmochim Acta 32:853–877CrossRefGoogle Scholar
  128. Helgeson HC, Brown TH, Nigrini A, Jones TA (1970) Calculation of mass transfer in geochemical processes involving aqueous solutions. Geochim Cosmochim Acta 34:569–592CrossRefGoogle Scholar
  129. Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. II. Applications. Geochim Cosmochim Acta 33:455–481CrossRefGoogle Scholar
  130. Hem JD (1959, 1992) Study and interpretation of the chemical characteristics of natural water. US Geol Surv Water Supply Paper 1473, 269 pp, Revised and last reprinted in 1992Google Scholar
  131. Hendry MJ, Schwartz FW (1990) Chemical evolution of ground water in the Milk River aquifer. Can J Ground Water 28(2):253–261Google Scholar
  132. Hendry MJ, Schwartz FW, Robertson CR (1991) Hydrogeology and hydrogeochemistry of the Milk River Aquifer system—a review. J Appl Geochem 6:369–380CrossRefGoogle Scholar
  133. Herczeg AL, Simpson HJ, Mazor E (1993) Transport of soluble salts within a large semi-arid basin: River Murray, Australia. J Hydrol 144:59–84CrossRefGoogle Scholar
  134. Herczeg AL, Torgersen T, Chivas AR, Habermehl MA (1991) Geochemistry of ground waters from the Great Artesian Basin, Australia. J Hydrol 126:225–245CrossRefGoogle Scholar
  135. Herman J, Lorah M (1988) Calcite precipitation rates in the field: measurement and prediction for a travertine-depositing stream. Geochim Cosmochim Acta 52:2347–2355CrossRefGoogle Scholar
  136. Hitchon B, Perkins EH, Gunter WD (1999) Introduction to ground water geochemistry. Geoscience Publishing, Sherwood Park, Alberta, 310 ppGoogle Scholar
  137. Hochella MF, White AF (1990) Mineral-water interface geochemistry. In: Hochella MF, White AF (eds) Mineral Soc Am Rev Mineral 23:603 ppGoogle Scholar
  138. Hostettler JD (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am J Sci 284:734–759Google Scholar
  139. Hunkeler D, Aravena R, Butler B (1999) Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ Sci Technol 33:2733–2738Google Scholar
  140. Ingerson E, Pearson FJ Jr (1964) Estimation of age and rate of motion of groundwater by the 14C-method. In: Recent researches in the fields of atmosphere, hydrosphere, and nuclear geochemistry, Sugawara Festival Volume. Maruzen Co., Tokyo, pp 263–283Google Scholar
  141. International Atomic Energy Agency (2005) IAEA Guidebook on the use of chlorofluorocarbons in hydrology (in press)Google Scholar
  142. Ittner T, Gustafsson E, Nordqvist R (1991) Radionuclide content in surface and groundwater transformed into breakthrough curves: a Chernobyl fallout study in a forested area in northern Sweden. Swedish Nuclear Fuel and Waste Management Co. (SKB), SKB Tech Rep 91-28, 16 ppGoogle Scholar
  143. Ivanovich M, Frölich K, Hendry MJ, Andrews JN, Davis SN, Drimmie RJ, Fabryka-Martin J, Florkowski T, Fritz P, Lehmann BE, Loosli HH, Nolte E (1992) Evaluation of isotopic methods for the dating of very old groundwaters: a case study of the Milk River aquifer. In: Isotope techniques in water resources development 1991, Proceedings of symposium, Vienna, March 11–15, 1991. International Atomic Energy Agency, Vienna, pp 229–244Google Scholar
  144. Johnson TM, DePaolo DJ (1996) Reaction-transport models for radiocarbon in groundwater: the effects of longitudinal dispersion and the use of Sr isotope ratios to correct for water–rock interaction. Water Resour Res 32(7):2203–2212CrossRefGoogle Scholar
  145. Jones BF, Anderholm SK (1996) Some geochemical considerations of brines associated with bedded salt repositories. In: Bottrel SH (ed) Fourth International Symposium Geochemistry of the Earth’s Surface. International Association of Geochemistry & Cosmochemistry, pp 343–353Google Scholar
  146. Jones BF, Bowser CJ (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes: chemistry, geology, physics, chap 7. Springer, Berlin Heidelberg New York, pp 179–235Google Scholar
  147. Jones BF, Hanor JS, Evans WR (1994) Sources of dissolved salts in the central Murray Basin, Australia. Chem Geol 111:135–154CrossRefGoogle Scholar
  148. Jones BF, Llamas MR (1989) Normative analysis of groundwaters from the Madrid Basin, Spain. In: Miles DL (ed) Proceedings of 6th International Symposium on Water–Rock Interaction, Malvern, 3–8 August 1989, Balkema, Rotterdam, pp 341–347Google Scholar
  149. Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology, chap 4. Kluwer Academic Publishers, Boston, pp 111–144Google Scholar
  150. Kamensky GN (1958) Hydrochemical zoning in the distribution of underground waters. In: Proceedings of the Symposium on Ground Water 1955. Central Board of Geophysics. Temple Press, Calcutta, Pub. No. 4, pp 281–292Google Scholar
  151. Katz BG, Böhlke JK, Hornsby HD (2001) Timescales for nitrate contamination of spring waters, northern Florida, USA. Chem Geol 179:167–186CrossRefGoogle Scholar
  152. Kauffman SJ, Herman JS, Jones BF (1998) Lithological and hydrological influences on groundwater composition in a heterogenous carbonate-clay aquifer system. Geol Soc Am Bull 110(9):1163–1173Google Scholar
  153. Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier Science Publishers, Amsterdam, 839 ppGoogle Scholar
  154. Kim J, Dong H, Seabaugh J, Newell SW, Eberl DD (2004) Role of microbes in the smectite-to-illite reaction. Science 203:830–832CrossRefGoogle Scholar
  155. Kipfer R, Aeschback-Hertig W, Peters F, Stute M (2002) Noble gases in lakes and ground waters. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 27:615–700Google Scholar
  156. Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester, 508 ppGoogle Scholar
  157. Konikow LF, Bredeheoft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15:75–83CrossRefGoogle Scholar
  158. Konikow LF, Glynn PD (2005) Modeling ground-water flow and quality. In: Selinus O (ed) Medical geology. Academic Press (in press)Google Scholar
  159. Korzhinskii DS (1936) Mobility and inertia of components in metasomatism (in Russian). Izvestiya AN USSR Ser Geol 1:35–60Google Scholar
  160. Krumbein WC, Garrels RM (1952) Origin and classification of chemical sediments in terms of pH and oxidation–reduction potentials. J Geol 60:1–30Google Scholar
  161. Landwehr JM, Winograd IJ (2001) Dating the Vostok ice core record by importing the Devils Hole chronology. J Geophys Res 106(D23):31, 853–31, 862Google Scholar
  162. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, Upper Saddle River, NJ, 600 ppGoogle Scholar
  163. Leaney FJ, Allison GB (1986) Carbon-14 and stable isotope data for an area in the Murray Basin: its use in estimating recharge. J Hydrol 88:129–145Google Scholar
  164. Lehmann BE, Oeschger H, Loosli HH, Hurst GS, Allman SL, Chin CH, Kramer SD, Payne MG, Phillips RC, Willis RD, Thonnard N (1985) Counting 81Kr atoms for analysis of groundwater. J Geophys Res 90(B13):11547–11551Google Scholar
  165. Lehmann BE, Davis SN, Fabryka-Martin JT (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour Res 29:2027–2040CrossRefGoogle Scholar
  166. Lehmann BE, Love A, Purtschert R, Collon P, Loosli HH, Kutschera W, Beyerle U, Aeschbach-Hertig W, Kipfer R, Frape SK, Herczeg A, Moran J, Tolstikhin IN, Groning M (2003) A comparison of groundwater dating with Kr-81, Cl-36 and He-4 in four wells of the Great Artesian Basin, Australia. Earth Planet Sci Lett 211:237–250CrossRefGoogle Scholar
  167. Lindsey BD, Phillips SW, Donnelly CA, Speiran GK, Plummer LN, Bohlke JK, Focazio MJ, Burton WC, Busenberg E (2003) Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed. US Geol Surv Water Resour Invest Rep 03-4035, 201 ppGoogle Scholar
  168. Lippmann F (1977) The solubility product of complex minerals, mixed crystals and three-layer clay minerals. Neues Jahrb Min Abh 130:243–263Google Scholar
  169. Lippmann F (1980) Phase diagrams depicting the aqueous solubility of binary mineral systems. Neues Jahrb Min Abh 139:1–25Google Scholar
  170. Liu Z, Svensson U, Dreybrodt W, Daoxian Y, Buhmann D (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochim Cosmochim Acta 59:3087–3097CrossRefGoogle Scholar
  171. Llamas MR, Martinez A (1981) Application of different computer models to the study of solute transport in a vertical profile of the Madrid aquifer. Sci Total Environ 21:347–352CrossRefGoogle Scholar
  172. Loosli HH, Lehmann BE, Smethie WM Jr (2000) Noble gas radioisotopes: 37Ar, 85Kr, 39Ar, 81Kr. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 379–396Google Scholar
  173. Magaritz M, Wells M, Amiel AJ, Ronen D (1989) Application of a multi-layer sampler based on the dialysis cell technique for the study of trace metals in groundwater. Appl Geochem 4:617–624CrossRefGoogle Scholar
  174. Maiss M, Brenninkmeijer CAM (1998) Atmospheric SF6: trends, sources and prospects. Environ Sci Technol 32:3077–3086Google Scholar
  175. Małoszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57:207–231CrossRefGoogle Scholar
  176. Małoszewski P, Rauert W, Stichler W, Herrmann A (1983) Application of flow models to an Alpine catchment area using tritium and deuterium data. J Hydrol 66:319–330CrossRefGoogle Scholar
  177. Małoszewski P, Zuber A (1991) Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers. Water Resour Res 27:1937–1945CrossRefGoogle Scholar
  178. Małoszewski P, Zuber A (1996) Lumped parameter models for the interpretation of environmental tracer data, Manual on the mathematical models in isotope hydrogeology, IAEA-TECDOC-910, pp 9–58Google Scholar
  179. Manning AH, Solomon DK (2003) Using noble gases to investigate mountain-front recharge. J Hydrol 275:194–207CrossRefGoogle Scholar
  180. Manning AH, Solomon DK, Sheldon AL (2003) Applications of a total dissolved gas pressure probe in ground water studies. Ground Water 41(4):440–448Google Scholar
  181. Marty B, Torgersen T, Meynier V, O’Nions RK, De Marsily G (1993) Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour Res 29:1025–1035CrossRefGoogle Scholar
  182. Mattle N, Kinzelbach W, Beyerle U, Huggenberger P, Loosli HH (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J Hydrol 242:183–196CrossRefGoogle Scholar
  183. Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters; Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321–1336CrossRefGoogle Scholar
  184. Mazor E, Bosch A (1992) Helium as a semi-quantitative tool for groundwater dating in the range of 104–108 years. In: Proceedings of Consultants Meeting on Isotopes of Noble Gases as Tracers in Environmental Studies. International Atomic Energy Agency, Vienna, pp 163–178Google Scholar
  185. McCarthy JF, Degueldre C (1993) Sampling and characterization of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle J, van Leeuwen HP (eds) Environmental particles, vol 2. Lewis Publishers, Chelsea, MI, USA, pp 247–315Google Scholar
  186. McLachlan JA (2001) Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev 22(3):319–341CrossRefPubMedGoogle Scholar
  187. McMahon PB (2001) Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions. In: Remenda V (ed) Theme issue on confining units. Hydrogeol J 9:34–43 DOI 10.1007/s100400000109CrossRefGoogle Scholar
  188. McMahon PB, Bohlke JK, Christenson SC (2004) Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, Southwestern Kansas, USA. Appl Geochem 19:1655–1686CrossRefGoogle Scholar
  189. Mehta S, Fryar AE, Banner JL (2000) Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA. Appl Geochem 15:849–864CrossRefGoogle Scholar
  190. Miller JA (1999) Ground water atlas of the United States, introduction and national summary. US Geol Surv, HA-730 (and volumes within the HA-730 series). http://capp.water.usgs.gov/gwa/index.html
  191. Miller W, Alexander R, Chapman N, McKinley I, Smellie J (1994) Natural analogue studies in the geological disposal of radioactive wastes. Elsevier, Netherlands. Stud Environ Sci 57:412Google Scholar
  192. Mook WG (1972) On the reconstruction of the initial 14C content of groundwater from the chemical and isotopic composition. In: Proceedings of Eighth International Conference on Radiocarbon Dating, R Soc N Z, Wellington, New Zealand, Vol 1, pp 342–352Google Scholar
  193. Mook WG (1980) Carbon-14 in hydrogeological studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, Vol 1. Elsevier, Amsterdam, pp 49–74Google Scholar
  194. Morgenstern U (2000) Silicon-32, Environmental tracers in subsurface hydrology. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Boston, pp 498–502Google Scholar
  195. Morris JC, Stumm W (1967) Redox equilibria and measurements of potentials in the aquatic environment. In: Stumm W (ed) Equilibrium concepts in natural water systems, chap 13. Am Chem Soc Adv Chem Ser 67, Washington, DC, pp 270–285Google Scholar
  196. Morse BS (2002) Radiocarbon dating of groundwater using paleoclimatic constraints and dissolved organic carbon in the southern Great Basin, Nevada and California. Unpubl. MS thesis, University of Nevada, Reno, NV, 63 ppGoogle Scholar
  197. Moser H, Rauert W (1983) Determination of groundwater movement by means of environmental isotopes—state of the art. In: IAHS Symposium on Relation of Groundwater Quantity and Quality, XVIII IUGG Assembly, Hamburg, pp 1–30Google Scholar
  198. Mozeto AA, Fritz P, Reardon EJ (1984) Experimental observations of carbon isotope exchange in carbonate-water systems. Geochim Cosmochim Acta 48:495–504CrossRefGoogle Scholar
  199. Münnich KO (1957) Messung des 14C-Gehalts von hartem Grundwasser [Measurement of 14C contents in hard ground water]. Naturwissenschaften 44:32–39Google Scholar
  200. Murphy EM, Davis SN, Long A, Donahue D, Jull AJT (1989) 14C in fractions of dissolved organic carbon in groundwater. Nature 337:153–155Google Scholar
  201. Nash H, McCall JGH (1994) Groundwater quality. Chapman & Hall, London, 224 ppGoogle Scholar
  202. Nativ R, Gutierrez GN(1989) Hydrogeology and hydrochemistry of Cretaceous aquifers, southern High Plains, USA. J Hydrol 108:79–109CrossRefGoogle Scholar
  203. Nativ R, Smith DA(1987) Hydrogeology and geochemistry of the Ogallala aquifer, southern High Plains. J Hydrol 91:217–253CrossRefGoogle Scholar
  204. Nelms DL, Harlow GE Jr, Plummer LN, Busenberg E (2003) Aquifer susceptibility in Virginia, 1998–2000. US Geol Surv Water Resour Invest Rep 03-4278, http://water.usgs.gov/pubs/wri/wri034278/
  205. Neuzil CE (1986) Groundwater flow in low-permeability environments. Water Resour Res 22:1163–1195Google Scholar
  206. Nicolis G, Prigogine I (1989) Exploring complexity: an introduction. WH Freeman, New York, 328 ppGoogle Scholar
  207. Nolte E, Krauthan P, Heim U, Korschinek G (1990) 36Cl measurements and dating of groundwater samples from the Milk River aquifer. Nucl Instrum Methods Phys Res B52:477–482Google Scholar
  208. Nordstrom DK, Plummer LN, Wigley TML, Wolery TJ, Ball JW, Jenne EA, Bassett RL, Crear DA, Florence TM, Fritz B, Hoffman M, Holdren Jr GR, Lafon GM, Mattigod SV, McDuff RE, Morel F, Reddy MM, Sposito G, Thrailkill J (1979) A comparison of computerized aqueous models. In: Jenne EA (ed) Chemical modeling in aqueous systems. Am Chem Soc Symp Ser 93:857–892Google Scholar
  209. Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water–rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740CrossRefGoogle Scholar
  210. Nordstrom DK (1994) On the evaluation and application of geochemical models, Appendix II. In: Proceedings of 5th CEC Natural Analogue Working Group and Alligator Rivers Analogue Project: Toledo, Spain, October 5–19, pp 375–385Google Scholar
  211. Nordstrom DK, Munoz JL (1994) Geochemical thermodynamics, 2nd edn. Blackwell Scientific Publications, BostonGoogle Scholar
  212. Nordstrom DK (2004) Modeling low-temperature geochemical processes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Vol 5, Drever JI (ed) Surface and ground water, weathering, erosion and soils, chap 5.02, 36 ppGoogle Scholar
  213. Olmsted FH (1962) Chemical and physical character of ground water in the National Reactor Testing Station, Idaho. US Geol Surv IDO-22043-USGSGoogle Scholar
  214. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263:641–646Google Scholar
  215. Oreskes N (2000) Why believe a computer? Models, measures, and meaning in the natural world. In: Schneiderman J (ed) The earth around us. WH Freeman, New York, pp 70–82Google Scholar
  216. Ortoleva PJ (1994) Geochemical self-organization. Oxford University Press, New York, 411 ppGoogle Scholar
  217. Paces T (1983) Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments. Geochim Cosmochim Acta 47:1855–1863CrossRefGoogle Scholar
  218. Paces JB, Neymark LA, Marshall BD, Whelan JF, Peterman ZE (2001) Ages and origins of calcite and opal in the Exploratory Studies Facility Tunnel, Yucca Mountain, Nevada. US Geol Surv Water Resour Invest Rep 01-4049Google Scholar
  219. Palissy B (1580) Discours admirable de la nature des eaux et fontaines tant naturelles qu’artificielles, des metaux, des sels & salines, des pierres, des terres, du feu & des emaux [Discourse on the nature of waters and fountains, both natural and artificial, and on metals, salts and brines, rocks, soils, fire and enamels]. M Le Jeune, Paris, 361 ppGoogle Scholar
  220. Palmer C (1911) The geochemical interpretation of water analyses. US Geol Surv Bull 479:31Google Scholar
  221. Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE—a computer program for geochemical calculations. US Geol Surv Water Resour Invest Rep 80-96Google Scholar
  222. Parkhurst DL, Plummer LN, Thorstenson DC (1982) BALANCE—a computer program for calculating mass transfer for geochemical reactions in ground water. US Geol Surv Water Resour Invest Rep 82-14Google Scholar
  223. Parkhurst DL, Christenson S, Breit GN (1992) Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations. US Geol Surv Open-File Rep 92-642, 113 ppGoogle Scholar
  224. Parkhurst DL, Plummer LN (1993) Geochemical models. In: Alley WM (ed) Regional ground-water quality, Vol 9, pp 199–225Google Scholar
  225. Parkhurst DL (1995) User’s guide to PHREEQC–a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. US Geol Surv Water Resources Invest Rep 95-4227, 143 ppGoogle Scholar
  226. Parkhurst DL (1997) Geochemical mole-balance modeling with uncertain data. Water Resour Res 33:1957–1970CrossRefGoogle Scholar
  227. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv Water Resour Invest Rep 99-4259Google Scholar
  228. Parkhurst DL, Stollenwerk KG, Colman JA (2003) Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts. US Geol Surv Water Resour Invest Rep 03-4017, 33 ppGoogle Scholar
  229. Parkhurst DL, Petkewich MD (2002) Geochemical modeling of an aquifer storage recovery experiment. Charleston, South Carolina. In: Aiken GR, Kuniansky EL (eds) US Geol Surv Artificial Recharge Workshop Proceedings, Sacramento, California: US Geol Surv Open-File Rep 02-89, pp 37–40Google Scholar
  230. Pearson FJ, Arcos D, Bath A, Boisson J-Y, Fernández AMa, Gäbler H-E, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003) Mont Terri Project—Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory. Bern, Switzerland, Federal Office for Water and Geology (FOWG), Geology Series 5, 319 ppGoogle Scholar
  231. Pearson FJ Jr, Hanshaw BB (1970) Sources of dissolved carbonate species in groundwater and their effects on carbon-14 dating. In: Proceedings of Isotope Hydrology Conference 1970. International Atomic Energy Agency, Vienna. IAEA-SM-129/18, pp 271–286Google Scholar
  232. Pearson FJ Jr, White DE (1967) Carbon-14 ages and flow rates of water in Carrizo sand, Atascosa County, Texas. Water Resour Res 3:251–261Google Scholar
  233. Pearson FJ Jr, Balderer W, Loosli HH, Lehmann BE, Matter A, Peters TJ, Schmassmann H, Gautschi A (1991) Applied isotope hydrogeology: a case study in northern Switzerland. Stud Environ Sci 43:439Google Scholar
  234. Pearson FJ Jr, Noronha CJ, Andrews RW (1983) Mathematical modeling of the distribution of natural 14C, 234U, and 238U in a regional ground-water system. In: Stuiver M, Kra R (eds) Proceedings of 11th International Radiocarbon Conference, Seattle, WA. Radiocarbon 25:291–300Google Scholar
  235. Pearson FJ Jr, Truesdell AH (1978) Tritium in the waters of Yellowstone National Park. In: Zartman RE (ed) Short Papers of the Fourth International Conference Geochronology Cosmochronology Isotope Geology 1978, Snowmass-at-Aspen, CO, Washington, DC. US Geol Surv Open-File Rep 78-701, pp 327–329Google Scholar
  236. Pearson FJ Jr (1992) Effects of parameter uncertainty in modeling 14C in groundwater. In: Taylor R, Long A, Kra R (eds) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 262–275Google Scholar
  237. Pebesma EJ, de Kwaadsteniet JW (1997) Mapping groundwater quality in the Netherlands. J Hydrol 200:364–386CrossRefGoogle Scholar
  238. Phillips FM, Mattick JL, Duval TA, Elmore D, Kubik PW(1988) Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour Res 24:1877–1891Google Scholar
  239. Phillips FM (1999) Chlorine-36. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Boston, pp 299–348Google Scholar
  240. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–923Google Scholar
  241. Pitzer KS (1991) Ion interaction approach: theory and data correlation. In: Pitzer KS (ed) Activity coefficients in electrolyte solutions, chap 3, 2nd edn. CRC Press, Boca Raton, FL, pp 75–153Google Scholar
  242. Pitzer KS (1994) Thermodynamics, 3rd edn. McGraw-Hill, New York, 626 ppGoogle Scholar
  243. Plummer LN, Parkhurst DL, Thorstenson DC (1983) Development of reaction models for ground-water systems. Geochim Cosmochim Acta 47:665–686CrossRefGoogle Scholar
  244. Plummer LN (1985) Geochemical modeling: a comparison of forward and inverse methods. In: Hitchon B, Wallick EI (eds) Proceedings of First Canadian/American Conference on Hydrogeology, Banff, Alberta, June 1984. National Water Well Assoc Pub, pp 149–177Google Scholar
  245. Plummer LN, Busby JF, Lee RW, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014CrossRefGoogle Scholar
  246. Plummer LN Prestemon EC, Parkhurst DL (1991) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH: US Geol Surv Water Resour Invest Rep 91-4078, 227 ppGoogle Scholar
  247. Plummer LN (1992) Geochemical modeling—past, present, future. In: Kharaka Y, Maest AS (eds) Proceedings of 7th International Symposium on Water–Rock Interaction, Park City, UT, July 9–23, 1992, pp 23–33Google Scholar
  248. Plummer LN, Busenberg E, Glynn PD, Blum AE (1992) Dissolution of aragonite-strontianite solid solutions in non-stoichiometric Sr(HCO3)2-Ca(HCO3)2-CO2-H2O solutions. Geochim Cosmochim Acta 56:3045–3072CrossRefGoogle Scholar
  249. Plummer LN, Michel RL, Thurman EM, Glynn PD (1993) Environmental tracers for age-dating young ground water. In: Alley WM (ed) Regional ground-water quality, Vol 11. Van Nostrand Reinhold, New York, pp 255–294Google Scholar
  250. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH—Version 2.0. US Geol Surv Water Resour Invest Rep 94-4169, 130 ppGoogle Scholar
  251. Plummer LN, Busenberg E, Riggs AC (2000) In-situ growth of calcite at Devils Hole, Nevada: comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth. Aquatic Geochem 6:257–274CrossRefGoogle Scholar
  252. Plummer LN, Busenberg E (2000) Chlorofluorocarbons. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology chap 15. Kluwer Academic Publishers, Boston, pp 441–478Google Scholar
  253. Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Ground-water residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179:93–111CrossRefGoogle Scholar
  254. Plummer LN, Sprinkle CL (2001) Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA. Hydrogeol J 9:127–150CrossRefGoogle Scholar
  255. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03-4131, 395 ppGoogle Scholar
  256. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow. Hydrogeol J 12(4):359–388CrossRefGoogle Scholar
  257. Plummer LN, Sanford WE, Bexfield LM, Anderholm SK, Busenberg E (2004c) Using geochemical data and aquifer simulation to characterize recharge and groundwater flow in the Middle Rio Grande Basin, USA. In: Hogan JF, Phillips FM, Scanlon BR (eds) Ground-water recharge in a desert environment: the southwestern United States. Am Geophys Union Monogr, Water Science and Application Series, Washington, DC, 9:185–216Google Scholar
  258. Plummer LN (2005) Dating of young groundwater. In: Proceedings of International Symposium on Isotope Hydrology Integrated Water Resources Management, May 19–23, 2003. International Atomic Energy Agency, Vienna, Austria (in press)Google Scholar
  259. Poreda RJ, Cerling TE, Solomon DK (1988) Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J Hydrol 103:1–9CrossRefGoogle Scholar
  260. Pourbaix MJN (1949) Thermodynamics of dilute aqueous solutions. Edward Arnold and Co., London, 136 ppGoogle Scholar
  261. Prasad A, Simmons CT (2003) Unstable density-driven flow in heterogeneous porous media: a stochastic study of the Elder (1967b) “short heater” problem. Water Resour Res 39(1), 21p(1007) doi:10.1029/2002WR001290Google Scholar
  262. Prieto M, Fernandez-Gonzalez A, Becker U, Putnis A (2000) Computing Lippmann diagrams from direct calculation of mixing properties of solid-solutions: application to the barite–celestite system. Aquat Geochem 6:133–146CrossRefGoogle Scholar
  263. Pucci AA (1999) Sulfate transport in a coastal plain confining unit, New Jersey, USA. Hydrogeol J 7(2):251-263Google Scholar
  264. Rademacher LK, Clark JF, Hudson GB, Erman DC, Erman NA (2001) Chemical evolution of shallow groundwater as recorded by springs, Sagehen basin; Nevada County, California. Chem Geol 179:37–51CrossRefGoogle Scholar
  265. Reardon EJ (1981) Kd’s—can they be used to describe reversible ion sorption reaction in contaminant migration? Ground Water 19:279–286Google Scholar
  266. Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) Estimation and corroboration of shallow ground-water flow paths and travel times by environmental tracer and hydraulic analyses—A case study near Locust Grove, Maryland. Water Resour Res 30:421–433CrossRefGoogle Scholar
  267. Remenda V (2001) Theme issue on confining units. Hydrogeol J 9:123CrossRefGoogle Scholar
  268. Renick BC (1924) Base exchange in ground water by silicates as illustrated in Montana. US Geol Surv Water Supply Paper 520-DGoogle Scholar
  269. Robertson JB, Schoen R, Barraclough JT (1974) The influence of liquid waste disposal on the geochemistry of water at the National Reactor Testing Station, Idaho: 1952–1970. US Geol Surv Open-File Rep IDO-22053, 231 ppGoogle Scholar
  270. Ronen D, Magaritz M, Levy I (1987) An in situ multilevel sampler for preventive monitoring and study of hydrochemical profiles in aquifers. Ground Water Monit Rev 7:69–74Google Scholar
  271. Rosenthal E, Jones BF, Weinberger G (1998) The chemical evolution of Kurnub Group paleowater in the Sinai-Negev province - a mass balance approach. Appl Geochem 13(5):553–569CrossRefGoogle Scholar
  272. Rozanski K, Gonfiantini R, Araguas-Araguas L (1991) Tritium in the global atmosphere: distribution patterns and recent trends. J Physics G, Nucl Particle Phys 17:S523–S536Google Scholar
  273. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Am Geophys Union, Geophys Monogr 78:1–36Google Scholar
  274. Runnells DD, Lindberg RD (1990) Selenium in aqueous solutions: the impossibility of obtaining a meaningful Eh using a platinum electrode, with implications for modeling of natural waters. Geology 18:212–215CrossRefGoogle Scholar
  275. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 36(6):1635–1642CrossRefGoogle Scholar
  276. Sanford WE (1997) Correcting for diffusion in carbon-14 dating of groundwater. Ground Water 35:357–361Google Scholar
  277. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004a) Use of environmental tracers to estimate parameters for a predevelopment-ground-water-flow model of the Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resour Invest Rep 03-4286, 102 ppGoogle Scholar
  278. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater model. Hydrogeol J 12(4):389–407CrossRefGoogle Scholar
  279. Scanlon BR, Cook PG (2002) Theme issue on groundwater recharge. Hydrogeol J 10:237pGoogle Scholar
  280. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  281. Schlosser P, Stute M, Dorr H, Sonntag C, Munnich KO (1988) Tritium/3He dating of shallow groundwater. Earth Planet Sci Lett 89:353–362CrossRefGoogle Scholar
  282. Schlosser P, Stute M, Sonntag C, Munnich KO (1989) Tritiogenic3He in shallow groundwater. Earth Planet Sci Lett 94:245–256CrossRefGoogle Scholar
  283. Schlosser P, Dunkle-Shapiro S, Stute M, Aeschbach-Hertig W, Plummer LN, Busenberg E (1998) Tritium/He dating of young groundwater: chronologies for environmental records. In: Isotope techniques in the study of environmental change. International Atomic Energy Agency, Vienna, pp 165–189Google Scholar
  284. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects and future challenges. Anal Bioanal Chem 378:283–300CrossRefGoogle Scholar
  285. Shapiro AM (2002) Cautions and suggestions for geochemical sampling in fractured rock. Groundwater Monit Remed 22:151–164Google Scholar
  286. Shapiro SD, Busenberg E, Focazio MJ, Plummer LN (2004) Historical trends in occurrence and atmospheric inputs of halogenated volatile organic compounds in untreated ground water used as a source of drinking water. Sci Total Environ 321:201–217CrossRefGoogle Scholar
  287. Sheets RA, Bair ES, Rowe GL (1998) Use of 3H/3He ages to evaluate and improve groundwater flow models in a complex buried-valley aquifer. Water Resour Res 34:1077–1089CrossRefGoogle Scholar
  288. Siegel DI (1991) Evidence for dilution of deep, confined ground water by vertical recharge of isotopically heavy Pleistocene water. Geology 19:433–436CrossRefGoogle Scholar
  289. Siegel MD, Anderholm S (1994) Geochemical evolution of groundwater in the Culebra Dolomite near the Waste Isolation Pilot Plant, southeastern New Mexico, USA. Geochim Cosmochim Acta 58:2299–2323CrossRefGoogle Scholar
  290. Sillén LG (1967) Master variables and activity scales. In: Gould RF (ed) Equilibrium concepts in natural water systems. Am Chem Soc Adv Chem Ser 67, Washington, DC, pp 45–56Google Scholar
  291. Simmons CT, Fenstemaker TR, Sharp JM Jr (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275CrossRefPubMedGoogle Scholar
  292. Smith RA, Schwarz GE, Alexander RB (1997) Regional interpretation of water-quality monitoring data. Water Resour Res 33:2781–2798CrossRefGoogle Scholar
  293. Solomon DK, Sudicky EA (1991) Tritium and helium 3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309–2319CrossRefGoogle Scholar
  294. Solomon DK, Schiff SL, Poreda RJ, Clark WB (1993) A validation of the 3H/3He method for determining groundwater recharge. Water Resour Res 29:2951–2962CrossRefGoogle Scholar
  295. Solomon DK, Hunt A, Poreda RJ (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour Res 32:1805–1813CrossRefGoogle Scholar
  296. Solomon DK, Cook PG (1999) 3H and 3He. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Press, Amsterdam, pp 397–424Google Scholar
  297. Sprinkle CL (1989) Geochemistry of the Floridan aquifer system in Florida and in parts of Georgia, South Carolina, and Alabama. US Geol Surv Prof Pap 1403-I, 105 ppGoogle Scholar
  298. Steefel CI, Van Capellen PV (1990) A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim Cosmochim Acta 54:2657–2677CrossRefGoogle Scholar
  299. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, New York, 1024 ppGoogle Scholar
  300. Sturchio NC et al (2004) One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophys Res Lett 31:L05503, doi:10.1029/2003GL019234CrossRefGoogle Scholar
  301. Stute M, Schlosser P (1993) Principles and applications of the noble gas paleothermometer. In: Swart PK, Lohmann KC, McKenzie J, Savin S (eds) Climate change in continental isotopic records. Am Geophys Union Monogr 78:89–100Google Scholar
  302. Stute M, Schlosser P (1999) Atmospheric noble gases. In: Cook P, Herczeg A (eds) Environmental tracers in subsurface hydrology chap 11. Kluwer Academic Publishers, Boston, pp 349–377Google Scholar
  303. Stute M, Sonntag C, Deak J, Schlosser P (1992a) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 56:2051–2067CrossRefGoogle Scholar
  304. Stute M, Schlosser P, Clark JF, Broecker WS (1992b) Paleotemperatures in the southwestern United States derived from noble gases in ground water. Science 256:1000–1003Google Scholar
  305. Stute M, Talma AS (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gases and δ18O, Stampriet aquifer, Namibia. In: Proceedings of Isotope Techniques in the Study of Environmental Change. International Atomic Energy Agency, Vienna, Austria, (1998) IAEA-SM-349/53, pp 307–318Google Scholar
  306. Sudicky EA, Frind EO (1981) Carbon-14 dating of groundwater in confined aquifers: implications of aquitard diffusion. Water Resour Res 17:1060–1064Google Scholar
  307. Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age-dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32:1023–1038CrossRefGoogle Scholar
  308. Talma AS, Weaver JMC, Plummer LN, Busenberg E (2000) CFC tracing of groundwater in fractured rock aided with 14C and 3H to identify water mixing. In: Sililo O, Rotterdam O (eds) Groundwater: past achievements and future challenges, pp 635–640Google Scholar
  309. Tamers MA (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In: Stout GE (ed) Isotope techniques in the hydrologic cycle. Am Geophys Union Monogr 11:143–152Google Scholar
  310. Tamers MA (1975) Validity of radiocarbon dates on groundwater. Geophys Surv 2:217–239Google Scholar
  311. Thomas JM, Welch AH, Preissler AM (1989a) Geochemical evolution of ground water in Smith Creek Valley—a hydrologically closed basin in central Nevada, USA. Appl Geochem 4:493–510CrossRefGoogle Scholar
  312. Thomas JM, Carlton SM, Hines LB (1989b) Ground-water hydrology and simulated effects of development in Smith Creek Valley, a hydrologically closed basin in Lander County, Nevada. US Geol Surv Prof Pap 1409-E, 57 ppGoogle Scholar
  313. Thomas JM, Morse BS, Burr GS, Reines DL (2001) Age dating groundwater using dissolved organic carbon - an example from southern Nevada, USA. In: Cidu R (ed) Proceedings of Tenth International Water–Rock Interactions Symposium, Villasimius, Italy, 10–15 June 2001. Balkema Press, pp 1581–1584Google Scholar
  314. Thorstenson DC, Plummer LN (1977) Equilibrium criteria for two-component solids reacting with fixed composition in an aqueous phase- example: the magnesian calcites. Am J Sci 277:1203–1223Google Scholar
  315. Thorstenson DC, Fisher DW, Croft MG (1979) The geochemistry of the Fox Hills-Basal Hell Creek aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour Res 15:1479–1498Google Scholar
  316. Thorstenson DC (1984) The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geol Surv Open File Rep 84-072Google Scholar
  317. Thorstenson DC, Weeks EP, Haas H, Woodward JC, Peters CA (1998) The chemistry of unsaturated zone gases sampled in open boreholes at the crest of Yucca Mountain, Nevada-Data and basic concepts of chemical and physical processes in the mountain. Water Resour Res 34:1507–1529CrossRefGoogle Scholar
  318. Thorstenson DC, Parkhurst DL (2002) Calculation of individual isotope equilibrium constants for implementation in geochemical models. US Geol Surv Water Resour Invest Rep 02-4172, 129 ppGoogle Scholar
  319. Thorstenson DC, Parkhurst DL (2004) Calculation of individual isotope equilibrium constants for geochemical reactions. Geochim Cosmochim Acta 68(11):2449–2465CrossRefGoogle Scholar
  320. Torgersen T (1980) Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/Rn ages. J Geochem Explor 13:57–75CrossRefGoogle Scholar
  321. Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211–1218CrossRefGoogle Scholar
  322. Torgersen T, Ivey GN (1985) Helium accumulation in groundwater, 2: A model for the accumulation of the crustal 4He degassing flux. Geochim Cosmochim Acta 49:2445–2452CrossRefGoogle Scholar
  323. Torgersen T, Habermehl MA, Philips FM, Elmore D, Kubik P, Jones BG, Hemmick T, Gove HE (1991) Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia. Water Resour Res 27:3201–3214CrossRefGoogle Scholar
  324. Torgersen T (1992) Helium-4 model ages for pore fluids from fractured lithologies: discussion and application. In: Isotopes of noble gases as tracers in environmental studies, Vienna, Proceedings of a Consultants Meeting, May 29–June 2 (1989). International Atomic Energy Agency, Vienna, pp 179–201Google Scholar
  325. Torgersen T, Philips FM (1993) Reply to comment on “Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia” by Andrews JN and Fontes JCh. Water Resour Res 29:1875–1877CrossRefGoogle Scholar
  326. Truesdell AH, Jones BF (1974) WATEQ: a computer program for calculating chemical equilibria of natural waters. US Geol Surv J Res 2:233–248Google Scholar
  327. Varni M, Carrera J (1998) Simulation of groundwater age distributions. Water Resour Res 34(12):3271–3281CrossRefGoogle Scholar
  328. Vitvar T, Balderer W (1997) Estimation of mean water residence time and runoff generation by 18O measurements in a Pre-Alpine catchment (Rietholzbach, Eastern Switzerland). Appl Geochem 12:787–796CrossRefGoogle Scholar
  329. Vogel JC (1967) Investigation of groundwater flow with radiocarbon. In: Isotopes in hydrology, Proceedings of Symposium on Isotopes in Hydrology, 14–18 November 1966. International Atomic Energy Agency, Vienna, pp 355–369Google Scholar
  330. Vogel JC, Van Urk H (1975) Isotopic composition of groundwater in semi-arid regions of southern Africa. J Hydrol 25:23–36CrossRefGoogle Scholar
  331. Wallin B, Peterman Z (1999) Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Äspö Hard Rock Laboratory, southern Sweden. Appl Geochem 14:953–962CrossRefGoogle Scholar
  332. Walton AG (1967) Formation and properties of precipitates. Wiley, New York, 232 ppGoogle Scholar
  333. Wassenaar LI, Aravena R, Hendry MJ, Fritz P (1991) Controls on the transport and carbon isotopic composition of dissolved organic carbon in a shallow groundwater system, central Ontario. Water Resour Res 27:1975–1986CrossRefGoogle Scholar
  334. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198, doi:10.1029/2001WR000907CrossRefGoogle Scholar
  335. White AF, Peterson ML (1990) Role of reactive-surface-area characterization in geochemical kinetic models. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416:461–475Google Scholar
  336. White AF, Brantley SL (1995) Chemical weathering rates of silicate minerals. In: White AF, Brantley SL (eds) Mineral Soc Am Rev Mineral 31:583Google Scholar
  337. White AF, Bullen TD, Schulz MS, Blum AE, Huntington TG, Peters NE (2001) Differential rates of feldspar weathering in granitic regoliths. Geochim Cosmochim Acta 65:847–869CrossRefGoogle Scholar
  338. White DE, Hem JD, Waring GA (1963) Chemical composition of subsurface waters. In: Data of geochemistry, 6th edn. US Geol Surv Prof Pap 440-F: F1–F67Google Scholar
  339. Wigley TML, Plummer LN, Pearson FJ Jr (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139CrossRefGoogle Scholar
  340. Winograd IJ, Thordarson W (1976) Hydrogeologic and hydrochemical framework, southcentral Great Basin, Nevada-California, with special reference to the Nevada Test Site. US Geol Surv Prof Paper 712-C, 126 ppGoogle Scholar
  341. Winograd IJ, Pearson FJ Jr (1976) Major carbon-14 anomaly in a region carbonate aquifer: Possible evidence for mega scale channeling, south-central Great Basin. Water Resour Res 12:1125–1143Google Scholar
  342. Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258:255–260Google Scholar
  343. Winograd IJ, Landwehr JM, Ludwig KR, Coplen TB, Riggs AC (1997) Duration and structure of the last four interglaciations. Quat Res 48(2):141–154CrossRefGoogle Scholar
  344. Winograd IJ (2001) Interbasin groundwater flow in South Central Nevada: A further comment on the discussion between Davisson et al. (1999a, 1999b) and Thomas (1999). Water Resour Res 37(2):431–433CrossRefGoogle Scholar
  345. Wolery TJ (1979) Calculation of chemical equilibrium between aqueous solution and minerals: The EQ3/6 software package. Lawrence Livermore National Laboratory, Livermore, CA. Rep UCRL-52658Google Scholar
  346. Wolery TJ, Jackson KJ, Bourcier WL, Bruton CJ, Viani BE, Knauss KG, Delany JM (1990) Current status of the EQ3/6 software package for geochemical modeling. In: Melchior DC, Bassett RK (eds) Chemical modeling of aqueous systems II. Am Chem Soc Symp Ser 416:104–116Google Scholar
  347. Yurtsever Y (1983) Models for tracer data analysis. In: Guidebook on nuclear techniques in hydrology, 1983 edn. International Atomic Energy Agency, Vienna. Tech Rep Ser 91, pp 381–402Google Scholar
  348. Zoellmann K, Kinzelbach W, Fulda C (2001a) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187–205CrossRefGoogle Scholar
  349. Zoellmann K, Kinzelbach W, Aeschbach-Hertig W (2001b) BOXmodel: evaluating environmental tracer data by the boxmodel approach, accessible at: http://www.baum.ethz.ch/ihw/boxmodel_en.html
  350. Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fritz P, Fontes JCh (eds) Handbook of environmental isotope geochemistry, Vol 2: the terrestrial environment, B. Elsevier, New York, NY, pp 1–59Google Scholar
  351. Zuber A (1994) On calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. In: Mathematical models and their applications to isotope studies in groundwater hydrology. International Atomic Energy Agency, Vienna. IAEA-TECDOC-777, pp 11–41Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.US Geological Survey436 National CenterRestonUSA
  2. 2.US Geological Survey432 National CenterRestonUSA

Personalised recommendations