Skip to main content
Log in

Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management.

Résumé

Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L’écologie des eaux souterraines a évolué d’une science décrivant uniquement les biotopes souterrains à des études multidisciplinaires qui intègrent l’écologie et l’hydrogéologie. L’approche multidisciplinaire cherche à élucider le fonctionnement des écosystèmes souterrains et leur rôle consistant à maintenir la qualité des eaux souterraines et de surface. Dans les écotones des eaux de la surfaces des aquifères, les gradients géochimiques et les biofilms microbiologiques contrôlent les transformations de la qualité de l’eau. La faune de subsurface (stygofauna) construisent les biofilms, altèrent la taille des pores interstitiels à travers leur mouvement, et transportent physiquement des matériaux à travers l’environnement des eaux souterraines. Par ailleurs, les changements de leur population signalent un déclin de la qualité de l’eau.

Une meilleure intégration de l’écologie des eaux souterraines, de la biogeochimie, et de l’hydrogéologie pourra faire avancer de manière efficace de notre compréhension des écosystèmes souterrains, et spécialement en terme de bioremédiation des eaux souterraines contaminées, de maintenance et d’amélioration de la qualité des eaux de surface dépendant des écosystèmes souterrains, et l’amélioration de la protection des habitats des eaux souterraines durant l’extraction des ressources naturelles. En général, cela conduira à une meilleure compréhension de l’implication de l’hydrogéologie et de la géologie des aquifères à la distribution de la faune de subsurface et aux microbiota, aux processus écologiques tels que les cycles du carbone, et la gestion durable des eaux souterraines.

Resumen

Los entornos ecológicos en ambientes subsuperficiales están relacionados directamente con el flujo de agua subterránea, la conductividad hidráulica, biogeoquímica intersticial, tamaño de los poros, y vínculos hidrológicos con acuíferos adyacentes y ecosistemas superficiales. La ecología del agua subterránea ha evolucionado a partir de una ciencia que describe la biota subterránea única hasta alcanzar la forma actual que enfatiza estudios multidisciplinarios que integran hidrogeología y ecología. Este enfoque multidisciplinario busca clarificar la función de los ecosistemas de agua subterránea y sus roles en el mantenimiento de la calidad de agua superficial y subterránea. En ecotonos de agua superficial y de acuíferos, los gradientes geoquímicos y biopelículas microbiales median transformaciones de calidad de agua. La fauna subsuperficial (estigofauna) se alimenta de biopeliculas, altera el tamaño de los poros intersticiales mediante su movimiento, y transporta físicamente material a través del ambiente de aguas subterráneas. Además, los cambios en sus poblaciones aportan señales de decadencia de calidad de agua. La mejor integración de ecología de aguas subterráneas, biogeoquímica, e hidrogeología incrementará significativamente nuestro entendimiento de ecosistemas subterráneos, especialmente en términos de bioremediación de aguas subterráneas contaminadas, mantenimiento o mejoramiento de calidad de agua superficial en ecosistemas dependientes de agua subterránea, y protección mejorada de habitats de agua subterránea durante la extracción de recursos naturales. Sobretodo, esto conducirá a un mejor entendimiento de las implicaciones de la hidrología de aguas subterráneas y geología del acuífero, de las distribuciones de fauna subsuperficial y microbiota, procesos ecológicos tal como ciclado de carbono, y gestión sostenible de aguas subterráneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9

Similar content being viewed by others

References

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. U.S. Geological Survey Circular 1186. Colorado, Denver

    Google Scholar 

  • Bärlocher F, Murdoch JH (1989) Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia 184:61–69

    Google Scholar 

  • Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20

    Article  Google Scholar 

  • Baxter CV, Hauer FR (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 57:1470–1481

    Article  Google Scholar 

  • Botosaneau L (1986) Stygofauna mundi. A faunistic, distributional and ecological synthesis of the world fauna inhabiting subterranean waters. EJ Brill, Leiden

    Google Scholar 

  • Boulton AJ (2000a) The subsurface macrofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego. 337–362

    Google Scholar 

  • Boulton AJ (2000b) River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosys Health 6:108–118

    Article  Google Scholar 

  • Boulton AJ (2001) Twixt two worlds: Taxonomic and functional biodiversity at the surface water/groundwater interface. Rec West Aust Mus (Suppl) 64:1–13

    Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29:59–81

    Article  Google Scholar 

  • Boulton AJ, Depauw S, Marmonier P (2002a) Hyporheic dynamics in a degraded rural stream carrying a ‘sand slug’. Verh Internat Verein Limnol 28:120–124

    Google Scholar 

  • Boulton AJ, Hakenkamp C, Palmer M, Strayer D (2002b) Freshwater meiofauna and surface water-sediment linkages: A conceptual framework for cross-system comparisons. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna biology and ecology. Backhuys, Leiden, The Netherlands, 241–259

    Google Scholar 

  • Boulton AJ, Humphreys WF, Eberhard SM (2003) Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservation. Aquat Ecosys Health Manage 6:41–54

    Article  Google Scholar 

  • Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666

    Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshwat Biol 37:1–33

    Google Scholar 

  • Chapelle FH (2001) Ground-water microbiology and geochemistry. John Wiley & Sons, New York

    Google Scholar 

  • Charette M (2001) Submarine groundwater discharge creates “Iron Curtain”. Woods Hole Oceanogr Inst Ann Rep 2001:23–24

    Google Scholar 

  • Claret C, Marmonier P, Dole-Olivier M-J, Creuzé des Châtelliers M, Boulton AJ, Castella E (1999) A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Arch Hydrobiol 145:385–403

    Google Scholar 

  • Clifton C, Evans R (2001) Environmental flow requirements of groundwater dependent ecosystems. Environmental flows initiative technical report number 2, Commonwealth of Australia

  • Coineau N (2000) Adaptions to interstitial groundwater life. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: Subterranean ecosystems. Elsevier, Amsterdam, 189–210

    Google Scholar 

  • Culver D, Jones W, Holsinger J (1992) Biological and hydrological investigation of the Cedars, Lee County, Virginia, an ecologically significant and threatened karst area. In: Stanford JA, Simons J (eds) Proc First Internat Groundwat Ecol Conf, pp 281–290

  • Daly D, Dassargues A, Drew D, Dunne S, Goldsheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345

    Article  Google Scholar 

  • Danielopol DL (1994) What can we expect from groundwater ecologists? In: Stanford JA, Valett HM (eds) Proc Second Internat Groundwat Ecol Conf, pp 13–20

  • Danielopol DL, Creuzé des Châtelliers M, Moeszlacher F, Pospisil P, Popa R (1994) Adaptation of Crustacea to interstitial habitats: a practical agenda for ecological studies. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 218–244

    Google Scholar 

  • Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Env Conserv 30:104–130

    Article  Google Scholar 

  • Danielopol DL, Marmonier P (1992) Aspects of research on groundwater along the Rhône, Rhine and Danube. Reg Rivers: Res Manage 7:5–16

    Google Scholar 

  • Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224

    Article  Google Scholar 

  • Dent CL, Schade JJ, Grimm NB, Fisher SG (2000) Subsurface influences on surface biology. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 381–404

    Google Scholar 

  • Dole-Olivier M-J, Creuzé des Châtelliers M, Marmonier P (1993) Repeated gradients in subterranean landscape. Example of the stygofauna in the alluvial floodplain of the Rhône River (France). Arch Hydrobiol 127:451–471

    Google Scholar 

  • Dole-Olivier M-J, Marmonier P, Creuzé des Châtelliers M, Martin D (1994) Interstitial fauna associated with the alluvial floodplains of the Rhône Rover (France). In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 313–346

    Google Scholar 

  • Duff JH, Triska FH (1990) Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aq Sci 47:1140–1147

    Google Scholar 

  • Dumas P (2002) Stability of interstitial crustacean communities in an isolated alluvial aquifer. Hydrobiologia 468:63–76

    Article  Google Scholar 

  • Engel AS, Stern LA, Porter ML, Bennett PC (2002) Sulfur cycling and nutrient spiraling in karst. Geol Soc Am Meeting Abstract No. 96–13

  • Findlay S, Sobczak WV (2000) Microbial communities in hyporheic sediments. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 287–306

    Google Scholar 

  • Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, London

    Google Scholar 

  • Galloway DL, Alley WM, Barlow PM, Reilly TE, Tucci P (2003) Evolving issues and practices in managing ground-water resources: Case studies on the role of science. USGS Circular 1247. Colorado, Denver

    Google Scholar 

  • Graening GO (2000) Ecosystem dynamics of an Ozark Cave. PhD, University of Arkansas, USA

  • Gibert J (1991) Groundwater systems and their boundaries: Conceptual framework and prospects in groundwater ecology. Verh Internat Verein Limnol 24:1605–1608

    Google Scholar 

  • Gibert J, Dole-Olivier M-J, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. UNESCO/Parthenon Publishing, London, 199–225

    Google Scholar 

  • Gibert J, Danielopol DL, Stanford JA (eds) (1994) Groundwater ecology. Academic Press, San Diego

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: A truncated functional biodiversity. BioScience 52:473–481

    Google Scholar 

  • Giere O (1993) Meiobenthology. The microscopic fauna in aquatic sediments. Springer-Verlag, Berlin

    Google Scholar 

  • Griebler C (2001) Microbial ecology of subsurface ecosystems. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology: A tool for management of water resources. European Commission, Luxembourg 81–108

    Google Scholar 

  • Grimes KG, Hamilton-Smith E, Spate AP (1995) South east karst province of South Australia. Aust Cave Karst Manag Assoc Report. Adelaide, South Australia

    Google Scholar 

  • Gounot AM (1994) Microbial ecology of groundwaters. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 189–215

    Google Scholar 

  • Gunderson LH, Holling CS (2001) Panarchy: understanding transformations in systems of humans and nature. Island Press, New York

    Google Scholar 

  • Gurevich MS (1962) The role of microorganisms in producing the chemical composition of ground water. In: Kuznetsov SI (ed) Geologic activity of microorganisms. Trans Institut Microbiol, New York IX: 65–77

    Google Scholar 

  • Haack SK, Bekins BB (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63–76

    Article  Google Scholar 

  • Hakenkamp CC, Palmer MA (2000) The ecology of hyporheic meiofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 307–336

    Google Scholar 

  • Hamilton-Smith E, Eberhard SM (2000) Conservation of cave communities in Australasia. In: Wilkens H, Culver DC, Humphreys WF (eds.) Ecosystems of the world, Vol 30, Subterranean ecosystems. Elsevier, Amsterdam, 647–664

    Google Scholar 

  • Hancock P (2002) Human impacts on the stream-groundwater exchange zone. Environ Manag 29:761–781

    Google Scholar 

  • Hancock P (2004) The effects of river stage fluctuations on the hyporheic and parafluvial ecology of the Hunter River, New South Wales. PhD, University of New England, Armidale

    Google Scholar 

  • Hancock P, Boulton AJ, Raine A (2001) Surface-subsurface hydrological connectivity in sand-bed streams. In: Rutherfurd I, Sheldon F, Brierley G, Kenyon C (eds) Proc Third Australian Stream Management Conf, pp 259–264

  • Hatton T, Evans R (1998) Dependence of ecosystems on groundwater and its significance to Australia. Land Water Resour Res Develop Corp Occ Pap 12/98

  • Hendricks SP, White DS (1995) Seasonal biogeochemical patterns in surface water, subsurface hyporheic, and riparian ground water in a temperate stream ecosystem. Arch Hydrobiol 134:459–490

    Google Scholar 

  • Henry JC, Fisher SG (2003) Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. J N Am Benthol Soc 22:511–527

    Google Scholar 

  • Herczeg AL, Leaney FW, Dighton JC, Lamontagne S, Schiff SL, Telfer AL, English MC (2003) A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia. Limnol Oceanogr 48:2093–2105

    Google Scholar 

  • Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264

    Article  Google Scholar 

  • Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J N Am Benthol Soc 13:468–478

    Google Scholar 

  • Hoyle BL, Arthur EL (2000) Biotransformation of pesticides in saturated-zone materials. Hydrogeol J 8:89–103

    Article  Google Scholar 

  • Humphreys WF (1999) Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J Roy Soc West Aust 82:89–98

    Google Scholar 

  • Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Rec West Aust Mus (Suppl) 64:63–83

    Google Scholar 

  • Humphreys WF (2002) Groundwater ecosystems in Australia: an emerging understanding. Proc International Association Hydrogeologists Conf, pp 1–14

    Google Scholar 

  • Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotopes. Env Microbiol 6:111–120

    Article  Google Scholar 

  • Iliffe TM (2000) Anchialine cave ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30. Subterranean ecosystems Elsevier, Amsterdam, 59–76

    Google Scholar 

  • Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna-rich habitat. J N Amer Benthol Soc 15:508–519

    Google Scholar 

  • Jones JB, Holmes RM, Fisher SG, Grimm NB (1994) Chemoautotrophic production and respiration in the hyporheic zone of a Sonoran Desert stream. In: Stanford JA, Valett HM (eds) Proc Second Internat Groundwat Ecol Conf, pp 329–338

  • Jones JB, Fisher SG, Grimm NB (1995) Nitrification in the hyporheic zone of a desert stream ecosystem. J N Amer Benthol Soc 14:249–258

    Google Scholar 

  • Jones JB, Mulholland PJ (eds) (2000) Streams and ground waters. Academic Press, San Diego

    Google Scholar 

  • Karanovic T (2004) Subterranean copepods (Crustacea: Copepoda) from arid Western Australia. Crustaceana (Suppl) 3:1–366

    Google Scholar 

  • Karanovic I, Marmonier P (2003) Three new genera and nine new species of the subfamily Candoninae (Crustacea, Ostracoda, Podocopida) from the Pilbara region (Western Australia). Beaufortia 53:1–51

    Google Scholar 

  • Kemper KE (2004) Groundwater- from development to management. Hydrogeol J 12:3–5

    Article  Google Scholar 

  • Kinkle BK, Kane TC (2000) Chemolithotrophic microorganisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, 309–318

    Google Scholar 

  • Kölbel-Boelke J, Anders E-M, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. II: Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microb Ecol 16:31–48

    Google Scholar 

  • Lehman RM, Colwell FS, Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous flow conditions. Appl Environ Microbiol 67:2799–2809

    Article  CAS  PubMed  Google Scholar 

  • Leys R, Watts CHS, Cooper SJB, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834

    Google Scholar 

  • Malard F, Dole-Olivier M-J, Mathieu J, Stoch F (2001) Sampling manual for the assessment of regional groundwater biodiversity. http://www.pascalis-project.org

  • Malard F, Gibert J, Laurent R, Reygrobellet J-L (1994) A new method for sampling the fauna of deep karstic aquifers. C R Acad Sci 317:955–966

    Google Scholar 

  • Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshwat Biol 41:1–30

    Google Scholar 

  • Malard F, Mathieu J, Reygrobellet J-L, Lafont M (1996) Biomonitoring groundwater contamination: Application to a karst area in Southern France. Aquat Sci 58:159–187

    Article  Google Scholar 

  • Malard F, Reygrobellet J-L, Mathieu J, Lafont M (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110

    Google Scholar 

  • Mann AW, Horwitz RC (1979) Groundwater calcrete deposits in Australia: some observations from Western Australia. J Geol Soc Aust 26:293–303

    Google Scholar 

  • Marmonier P, Vervier P, Gibert J, Dole-Olivier M-J (1993) Biodiversity in ground waters. Trends Ecol Evol 8:392–395

    Article  Google Scholar 

  • Mauclaire L, Gibert J, Claret C (2000) Do bacteria and nutrients control faunal assemblages in alluvial aquifers? Arch Hydrobiol 148:85–98

    Google Scholar 

  • McLachlan A, De Ruyck A, Du Toit P, Cockcroft A (1992) Groundwater ecology at the dune/beach interface. Am Water Res Assoc Tech Pub Ser 92:209–216

    Google Scholar 

  • Mermillod-Blondin F, Gaudet J-P, Gérino M, Desrosiers G, Creuzé des Châtelliers M (2003) Influence of macroinvertebrates on physico-chemical and microbial processes in hyporheic sediments. Hydrol Process 17:779–794

    Article  Google Scholar 

  • Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125

    Google Scholar 

  • Morrice JA, Valett HM, Dahm CN, Campana ME (1997) Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrol Process 11:253–267

    Article  Google Scholar 

  • Mösslacher F (2000) Sensitivity of groundwater and surface water crustaceans to chemical pollutants and hypoxia: implications for pollution management. Arch Hydrobiol 149:51–66

    Google Scholar 

  • Motas CE (1958) Freatobiologia, o noura ramura a limnologiei [Phreatobiology, a new field of limnology]. Natura (Bucharest) 10:95–105

    Google Scholar 

  • Noltie DB, Wicks CM (2001) How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlicthys subterraneus: insights on the sightless from understanding the underground. Environ Biol Fish 62:171–194

    Article  Google Scholar 

  • Notenboom J, Plénet S, Turquin M-J (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 477–504

    Google Scholar 

  • Orghidan T (1959) Ein neuer lebensraum des unterirdischen wassers, der hyporheische biotop [A new habitat of the underground water, the hyporheic biotope]. Arch Hydrobiol 55:392–414

    Google Scholar 

  • Piotrowski MR (1989) Bioremediation: Testing the waters. Civ Eng 59:51–53

    Google Scholar 

  • Playford PE (2001) Subterranean biotas in Western Australia. Report for the Environmental Protection Agency, Western Australia

  • Plénet S (1995) Freshwater amphipods as biomonitors of metal pollution in surface and interstitial aquatic systems. Freshwat Biol 33:127–137

    Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27

    Google Scholar 

  • Racovitza EG (1907) Essai sur les problémes biospéologiques. Biospeologica I. Arch Zool Exp Gén 4:371–488

    Google Scholar 

  • Radke L (2000) Solute divides and chemical facies in south-eastern Australian salt lakes and the response of ostracods in time (Holocene) and space. PhD, Australian National University, Canberra, Australia

  • Rockhold ML, Yarwood RR, Niemet MR, Bottomley PJ, Selker JS (2002) Considerations for modelling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Wat Res 25:477–495

    Article  Google Scholar 

  • Romero A (2001) Scientists prefer them blind: the history of hypogean fish research. Environ Biol Fish 62:43–71

    Article  Google Scholar 

  • Rouch R (1986) Sur l’ecologie des eaux souterraines dans le karst [On the ecology of subsoil waters in the karst]. Stygologia 2:352–398

    Google Scholar 

  • Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 319–343

    Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406

    Google Scholar 

  • Sket B (1996) The ecology of anchihaline caves. Trends Ecol Evol 11:221–255

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Spruill TB (2000) Statistical evaluation of effects of riparian buffers on nitrate and groundwater quality. J Environ Qual 29:1523–1538

    Google Scholar 

  • Stanford J, Simons J (eds) (1992) Proceedings of the First International Conference on Ground Water Ecology, Maryland, American Water Resources Association

  • Stephansson O (2003) Theme issue on hydromechanics in geology and geotechnics. Hydrogeol J 11:3–6

    Google Scholar 

  • Strayer DL (1994) Limits to biological distributions in groundwater. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 287–313

    Google Scholar 

  • Testa JM, Charette MA, Sholkovitz ER, Allen MC, Rago A, Herbold CW (2002) Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biol Bull 203:255–256

    Google Scholar 

  • Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4785–4812

    Google Scholar 

  • Valett HM, Hakenkamp CC, Boulton AJ (1993) Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. J N Am Benthol Soc 12:40–43

    Google Scholar 

  • Van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in a contaminated aquifer. Appl Environ Microbiol 64:4185–4193

    Google Scholar 

  • Vervier P, Gibert J, Marmonier P, Dole-Olivier M-J (1992) A perspective on the permeability of the surface freshwater-groundwater ecotone. J N Amer Benthol Soc 11:93–102

    Google Scholar 

  • Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8

    Google Scholar 

  • Ward JV, Palmer MA (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287:147–156

    Google Scholar 

  • Watts CHS, Humphreys WF (2000) Six new species of Nirridessus and Tjirtudessus (Dytiscidae; Coleoptera) from underground waters in Australia. Records South Aust Mus 33:127–144

    Google Scholar 

  • Wenderoth DF, Rosenbrock P, Abraham W-R, Pieper DH, Höfle MG (2003) Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol 46:161–176

    Article  CAS  PubMed  Google Scholar 

  • Williams DD (2003) The brackish water hyporheic zone: Invertebrate community structure across a novel ecotone. Hydrobiologia 510:153–173

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1999) Ground water and surface water: A single resource. USGS Circular 1139 Denver, Colorado

    Google Scholar 

  • Wondzell SM, Swanson FJ (1996) Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. I: Hydrologic processes. J N Amer Benthol Soc 15:3–19

    Google Scholar 

Download references

Acknowledgements

The invitation by Dr Clifford Voss to present a perspective on the role of groundwater ecology in the future of hydrogeology, and his comments, advice and constructive criticism of this manuscript are appreciated. Marc Seifert, Dr Paul Frazier, and three referees (including Prof. Janine Gibert and Dr Carol Wicks) are thanked for encouraging and perspicacious comments on earlier drafts. Robert Schneider provided editorial advice. Part of this work was done while the senior author was in receipt of a postdoctoral fellowship funded by ECOWISE Environmental at the University of New England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hancock, P.J., Boulton, A.J. & Humphreys, W.F. Aquifers and hyporheic zones: Towards an ecological understanding of groundwater. Hydrogeol J 13, 98–111 (2005). https://doi.org/10.1007/s10040-004-0421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-004-0421-6

Keywords

Navigation